This paper deals with modeling hydrogen contents of bio-oil (H-BO) as a function of pyrolysis conditions and biomass compositions of feedstock. The support vector machine algorithm optimized by the grey wolf optimization method has been used in modeling this end. Comprehensive data for this purpose were aggregated from previous sources and reports. The results of various analyses showed that this algorithm has a high ability to predict actual results. The calculated values of R2, MRE (%), MSE, and RMSE were obtained as 0.973, 1.98, 0.0568, and 0.241, respectively. According to the results of various analyses, the high performance of this model in predicting the output values was proved. Also, by comparing this model with the previously proposed models in terms of accuracy, it was observed that this model had a better performance. This algorithm can be a good alternative to costly and time-consuming laboratory data.
Thermal conductivity (TC) of a phase change material (PCM) may be enhanced by distributing nanostructured materials (NSMs) termed nano-PCM. It is critical to accurately estimate the TC of nano-PCM to assess heat transfer during phase transition processes, namely, solidification and melting. Here, we propose Gaussian process regression (GPR) strategies involving four various kernel functions (KFs) (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) to predict TC of n-octadecane as a PCM. The accessible computational techniques indicate the accuracy of our proposed GPR model compared to the previously proposed methods. In this research, the foremost forecasting strategy has been considered as a GPR method. This model consists of the matern KF whose R2 values of training and testing phases are 1 and 1, respectively. In the following, a sensitivity analysis (SA) is used to explore the effectiveness of variables in terms of outputs and shows that the temperature (T) of nanofluid (NF) is the most efficient input parameter. The work describes the physical properties of NFs and the parameters that should be determined to optimize their efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.