The quantum-dot cellular automata (QCA) nano-technique has attracted computer scientists due to its noticeable features such as low power consumption and small size. Many papers have been published in the literature about the utilization of this technology for de-signing many QCA circuits and for presenting logic gates in an optimal structure. The T flip-flop, which is an essential part of digital designs, can be used to design synchronous and asynchronous counters. This paper presents a novel T flip-flop structure in an optimal form. The presented novel gate was used to design an N-bit binary synchronous counter. The QCADesigner software was used to verify the designed circuits and to present the simulation results, while the QCAPro tool was used for the power analysis. The proposed design required minimal power and showed good improvements over previous designs.
Purpose Quantum-dot cellular automata (QCA) has attracted computer scientists as new emerging nanotechnology for replacement the current CMOS technology because it has unique characteristics such as high frequency, extremely small feature size and low power consumption. The main building blocks in QCA are the majority gate and inverter so any Boolean function can be represented using these gates. Many important circuits were the target for implemented in this technology in an optimal form, such as random-access memory (RAM) cell. QCA-RAM cells were introduced in literature with different forms but most of them are not optimized enough. This paper aims to demonstrate QCA inherent capabilities that can facilitate the design of many important gates such as the XOR gate and multiplexer (MUX) without following any Boolean function to get an optimum design in terms of complexity and delay. Design/methodology/approach In this paper, a novel structure of QCA-MUX in an optimal form will be used to design two unique structures of a RAM cell. The proposed RAM cells are the lowest cost required compared with different counterparts. The presented RAM cells used a new approach that follows the new suggested block diagram. The presented circuits are simulated and tested with QCADesigner and QCAPro tools. Findings The comparison of the proposed circuits with the previously reported in the literature show noticeable improvements in speed, area, and the number of cells. The cost function analysis results for the proposed RAM cells show significant improvement compared to older circuits. Originality/value A novel structure of QCA-MUX in an optimal form will be used to design two unique structures of a RAM cell.
<span>The field of automated vehicle technology is developing rapidly developing. While it is likely to be many years before self-driving cars are commercially viable and used in a wide range of conditions by the general public, technological advances are speeding along the automated technology continuum towards this destination. Automated vehicle technologies troth with significant social benefits such as reduced injuries and deaths, increased road efficiency, mobility. Automated vehicles can improve traffic safety, balance traffic flows, maximize road usage by offering driver warnings and/or assuming vehicle control in dangerous situations, as well as provide motorists with the best end-to-end transportation experience and reduce emissions, which are the most important goals of modern smart traffic control infrastructures. Exchanging data and integration of such systems with Vehicle-to-Vehicle (V2V) may be a keystone to successful readying of vehicular ad-hoc networks (VANETs) and will simply be the following step of this evolution, with dynamic period of time data exchange between all the players of the traffic dominant system and fostering cooperative urban quality. One of the applications of this concept is to provide vehicles and roads with the ability to make road time more enjoyable and also to make roads safer. These applications are typical examples of what an Intelligent Transportation System (ITS) is called, whose objective is to improve security by using new information and communication technologies (NTIC). In this paper, we will focus on the study of the main component in ITS systems and present a review of the major V2V benefits related to driver safety by focusing primarily on the recent developments of these systems.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.