ObjectiveWe conducted a prospective, randomized, open-label, multicenter study to compare busulfan plus fludarabine (BuFlu) with busulfan plus cyclophosphamide (BuCy) as the conditioning regimen in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML) in first complete remission (CR1).MethodsTotally 108 AML-CR1 patients undergoing allo-HSCT were randomized into BuCy (busulfan 1.6 mg/kg, q12 hours, -7 ~ -4d; cyclophosphamide 60 mg/kg.d, -3 ~ -2d) or BuFlu (busulfan 1.6 mg/kg, q12 hours, -5 ~ -2d; fludarabine 30 mg/m2.d, -6 ~ -2d) group. Hematopoietic engraftment, regimen-related toxicity (RRT), graft-versus-host disease (GVHD), transplant related mortality (TRM), and overall survival were compared between the two groups.ResultsAll patients achieved hematopoietic reconstitution except for two patients who died of RRT during conditioning. All patients obtained complete donor chimerism by day +30 post-transplantation. The incidence of total and III-IV RRT were 94.4% and 81.5% (P = 0.038), and 16.7% and 0.0% (P = 0.002), respectively, in BuCy and BuFlu group. With a median follow up of 609 (range, 3–2130) days after transplantation, the 5-year cumulative incidence of TRM were 18.8 ± 6.9% and 9.9 ± 6.3% (P = 0.104); the 5-year cumulative incidence of leukemia relapse were 16.5 ± 5.8% and 16.2 ± 5.3% (P = 0.943); the 5-year disease-free survival and overall survival were 67.4 ± 7.6% and 75.3 ± 7.2% (P = 0.315), and 72.3 ± 7.5% and 81.9 ± 7.0% (P = 0.177), respectively in BuCy and BuFlu group.ConclusionCompared with BuCy, BuFlu as a myeloablative condition regimen was associated with lower toxicities and comparable anti-leukemic activity in AML-CR1 patients undergoing allo-HSCT.
Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for severe aplastic anemia (SAA) is mainly limited by the high incidence of graft failure and GvHD. Mesenchymal stem cells (MSCs) have been shown to support hematopoiesis in vivo and to display potent immunosuppressive effects to prevent or treat GvHD after HSCT. In a multicenter phase II trial, we developed an approach with co-transplantation of MSCs in patients undergoing haplo-HSCT. Forty-four patients with SAA were included. The conditioning regimen included busulfan, cyclophosphamide and thymoglobulin (ATG). The recipients received cyclosporin A (CsA), mycophenolate mofetil and short-term methotrexate for GvHD prophylaxis. Three out of 44 patients, who died early before hematopoietic engraftment, were not assessed. Evaluable patients (97.6%; 40/41) achieved hematopoietic reconstitution and sustained full donor chimerism. The median time for myeloid engraftment was 12 days (range 8-21 days) and for platelet engraftment was 19 days (range 8-154 days). The incidence was 29.3% for grade II-IV acute GvHD and 14.6% for chronic GvHD. The overall survival was 77.3% with a median 12-month (range 0.9-30.8) follow-up for surviving patients. These data suggest that co-transplantation of MSCs could reduce the risk of graft failure and severe GvHD in haplo-HSCT for SAA.
Quercetin is one of the naturally occurring dietary flavonol compounds. It is present abundantly in plants and has chemopreventive and anticancer effects. To investigate its anticancer mechanism, we examined the activity of quercetin against acute leukemia cell line, HL-60. Our results showed that quercetin inhibited cell proliferation and induced apoptosis in a time-and dose-dependent manner. Furthermore, quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and upregulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2 (Cox-2) mRNA and Cox-2 protein. Taken together, these findings suggested that quercetin induces apoptosis in a caspase-3-dependent pathway by inhibiting Cox-2 expression and regulates the expression of downstream apoptotic components, including Bcl-2 and Bax. Quercetin can be a potent and promising medicine which might be safely used in leukemia therapy.
The major obstacle is leukemia relapse for refractory leukemia undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). We previously introduced a strategy of sequential intensified conditioning and early rapid immunosupressant withdrawal for refractory leukemia undergoing allo-HSCT, with 5-year overall survival (OS) and 3-year relapse rate of 44.6% and 33.3%. To reduce leukemia relapse, prophylactic donor lymphocyte infusion (DLI) was administered based on our historical strategy. A total of 153 refractory advanced acute leukemia patients were enrolled in this prospective study. According to the availability of donor lymphocytes and the criteria for DLI, 144 patients surviving day +60 were divided into two groups (80 DLI versus 64 non-DLI). The relapse rate was less and OS was better in patients receiving DLI than in those not receiving DLI (22.7% vs 33.9%, P=0.048; 58.1% vs 54.9%, P=0.043). The non-relapse mortality (NRM) was similar between DLI and non-DLI groups (P=0.104). Overall, the 5-year overall and disease-free survival post-transplantation were 51.1%±5.7% and 49.2%±5.3%. The 5-year relapse rate and NRM were 27.3%±4.4% and 29.7%±5.3%. Multivariate analysis revealed that lower bone marrow blasts on day 0, DLI and chronic graft-versus-host disease were associated with less relapse and better OS. The strategy of sequential intensified conditioning followed by early immunosupressant withdrawal and DLI could reduce relapse of refractory acute leukemia after allo-HSCT and improve survival.
Quiescent leukemia stem cells (LSC) are important resources of resistance and relapse in chronic myelogenous leukemia (CML). Thus, strategies eradicating CML LSCs are required for cure. In this study, we discovered that AXL tyrosine kinase was selectively overexpressed in primary CML CD34 cells. However, the role of AXL and its ligand Gas6 secreted by stromal cells in the regulation of self-renewal capacity of LSCs has not been well investigated. The function of CML CD34 cells was evaluated by flow cytometer, CFC/replating, long-term culture-initiating cells (LTC-IC), CML mouse model driven by human gene and NOD- (NSI) mice. AXL was selectively overexpressed in primary CML CD34 cells. knockdown reduced the survival and self-renewal capacity of human CML CD34 cells. Pharmacologic inhibition of AXL reduced the survival and self-renewal capacity of human CML LSCs and in long-term grafts in NSI mice. Human CML CD34 cells conscripted bone marrow-derived stromal cells (BMDSC) and primary mesenchymal stem cells (MSC) to secrete Gas6 to form a paracrine loop that promoted self-renewal of LSCs. Suppression of AXL by shRNA and inhibitor prolonged survival of CML mice and reduced the growth of LSCs in mice. Gas6/AXL ligation stabilizes β-catenin in an AKT-dependent fashion in human CML CD34 cells. Our findings improve the understanding of LSC regulation and validate Gas6/AXL as a pair of therapeutic targets to eliminate CML LSCs. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.