Understanding the relationships within the Caryophyllaceae has been difficult, in part because of arbitrarily and poorly defined genera and difficulty in determining phylogenetically useful morphological characters. This study represents the most complete phylogenetic analysis of the family to date, with particular focus on the genera and relationships within the large subfamily Alsinoideae, using molecular characters to examine the monophyly of taxa and the validity of the current taxonomy as well as to resolve the obscure origins of divergent taxa such as the endemic Hawaiian Schiedea. Maximum parsimony and maximum likelihood analyses of three chloroplast gene regions (matK, trnL-F, and rps16) from 81 newly sampled and 65 GenBank specimens reveal that several tribes and genera, especially within the Alsinoideae, are not monophyletic. Large genera such as Arenaria and Minuartia are polyphyletic, as are several smaller genera. The phylogenies reveal that the closest relatives to Schiedea are a pair of widespread, largely Arctic taxa, Honckenya peploides and Wilhelmsia physodes. More importantly, the three traditional subfamilies (Alsinoideae, Caryophylloideae, and Paronychioideae) are not reflective of natural groups; we propose abandoning this classification in favor of a new system that recognizes major lineages of the molecular phylogeny at the tribal level. A new tribe, Eremogoneae Rabeler & W.L. Wagner, is described here.
Results of the first genus-wide phylogenetic analysis for Santalum (Santalaceae), using a combination of 18S-26S nuclear ribosomal (ITS, ETS) and chloroplast (3' trnK intron) DNA sequences, provide new perspectives on relationships and biogeographic patterns among the widespread and economically important sandalwoods. Congruent trees based on maximum parsimony, maximum likelihood, and Bayesian methods support an origin of Santalum in Australia and at least five putatively bird-mediated, long-distance dispersal events out of Australia, with two colonizations of Melanesia, two of the Hawaiian Islands, and one of the Juan Fernandez Islands. The phylogenetic data also provide the best available evidence for plant dispersal out of the Hawaiian Islands to the Bonin Islands and eastern Polynesia. Inability to reject rate constancy of Santalum ITS evolution and use of fossil-based calibrations yielded estimates for timing of speciation and colonization events in the Pacific, with dates of 1.0-1.5 million yr ago (Ma) and 0.4-0.6 Ma for onset of diversification of the two Hawaiian lineages. The results indicate that the previously recognized sections Polynesica, Santalum, and Solenantha, the widespread Australian species S. lanceolatum, and the Hawaiian species S. freycinetianum are not monophyletic and need taxonomic revision, which is currently being pursued.
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia.Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia.Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns.Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands.Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long-distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.