Recent fire seasons have fueled intense speculation regarding the effect of anthropogenic climate change on wildfire in western North America and especially in California. During 1972-2018, California experienced a fivefold increase in annual burned area, mainly due to more than an eightfold increase in summer forest-fire extent. Increased summer forest-fire area very likely occurred due to increased atmospheric aridity caused by warming. Since the early 1970s, warm-season days warmed by approximately 1.4°C as part of a centennial warming trend, significantly increasing the atmospheric vapor pressure deficit (VPD). These trends are consistent with anthropogenic trends simulated by climate models. The response of summer forest-fire area to VPD is exponential, meaning that warming has grown increasingly impactful. Robust interannual relationships between VPD and summer forest-fire area strongly suggest that nearly all of the increase in summer forest-fire area during 1972-2018 was driven by increased VPD. Climate change effects on summer wildfire were less evident in nonforested lands. In fall, wind events and delayed onset of winter precipitation are the dominant promoters of wildfire. While these variables did not change much over the past century, background warming and consequent fuel drying is increasingly enhancing the potential for large fall wildfires. Among the many processes important to California's diverse fire regimes, warming-driven fuel drying is the clearest link between anthropogenic climate change and increased California wildfire activity to date.Plain Language Summary Since the early 1970s, California's annual wildfire extent increased fivefold, punctuated by extremely large and destructive wildfires in 2017 and 2018. This trend was mainly due to an eightfold increase in summertime forest-fire area and was very likely driven by drying of fuels promoted by human-induced warming. Warming effects were also apparent in the fall by enhancing the odds that fuels are dry when strong fall wind events occur. The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful. Human-caused warming has already significantly enhanced wildfire activity in California, particularly in the forests of the Sierra Nevada and North Coast, and will likely continue to do so in the coming decades.
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.
We documented the effects of acidic atmospheric deposition and soil acidification on the canopy health, basal area increment, and regeneration of sugar maple (SM) trees across the Adirondack region of New York State, in the northeastern United States, where SM are plentiful but not well studied and where widespread depletion of soil calcium (Ca) has been documented. Sugar maple is a dominant canopy species in the Adirondack Mountain ecoregion, and it has a high demand for Ca. Trees in this region growing on soils with poor acid-base chemistry (low exchangeable Ca and % base saturation [BS]) that receive relatively high levels of atmospheric sulfur and nitrogen deposition exhibited a near absence of SM seedling regeneration and lower crown vigor compared with study plots with relatively high exchangeable Ca and BS and lower levels of acidic deposition. Basal area increment averaged over the 20th century was correlated (p< 0.1) with acid-base chemistry of the Oa, A, and upper B soil horizons. A lack of Adirondack SM regeneration, reduced canopy condition, and possibly decreased basal area growth over recent decades are associated with low concentrations of nutrient base cations in this region that has undergone soil Ca depletion from acidic deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.