The photodynamic effect of novel cationic porphyrins, with different pattern of meso-substitution by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl (A) and 4-(trifluoromethyl)phenyl (B) groups, have been studied in both solution bearing photooxidizable substrates and in vitro on a typical Gram-negative bacterium Escherichia coli. In these sensitizers, the cationic groups are separated from the macrocycle ring by a propoxy spacer. Thus, the charges have a high mobility and a minimal influence on photophysical properties of the porphyrin. These compounds produce singlet molecular oxygen, O2(1Delta(g)), with quantum yields of approximately 0.41-0.53 in N,N-dimethylformamide. In methanol, the l-tryptophan photodecomposition increases with the number of cationic charges in the sensitizer. In vitro investigations show that cationic porphyrins are rapidly bound to E. coli cells in approximately 5 min. A higher binding was found for A3B3+ porphyrin, which is tightly bound to cells still after three washing steps. Photosensitized inactivation of E. coli cellular suspensions follows the order: A3B3+ > A44+>> ABAB2+ > AB3+. Under these conditions, a negligible effect was found for 5,10,15,20-tetra(4-sulfonatophenyl)porphyrin (TPPS4(4-)) that characterizes an anionic sensitizer. Also, the results obtained for these new cationic porphyrins were compared with those of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin (TTAP4+), which is a standard active sensitizer established to eradicate E. coli. The photodynamic activity of TTAP4+ is quite similar to that produced by A4(4+). Studies in an anoxic condition indicate that oxygen is necessary for the mechanism of action of photodynamic inactivation of bacteria. The higher photodynamic activity of A3B3+ was confirmed by growth delay experiments. Photodynamic inactivation capacities of these sensitizers were also evaluated in E. coli cells immobilized on agar surfaces. Under these conditions, A3B3+ porphyrin retains a high activity to inactivate localized bacterial cells. Therefore, tricationic porphyrin A3B3+ is an interesting sensitizer with potential applications in photodynamic inactivation of bacteria in liquid suspensions or on surfaces.
The mechanistic aspects of Escherichia coli photodynamic inactivation (PDI) have been investigated in bacteria treated with 5,10,15-tris[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-(4-trifluoromethylphenyl)porphyrin iodide (A3B3+) and visible light. The photosensitization activity of A3B3+ porphyrin was compared with that of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP4+), which is an active tetracationic sensitizer to eradicate bacteria. The PDI damages on plasmid and genomic DNA were analyzed by electrophoresis. DNA photocleavage was observed after a long period of irradiation, when the bacterial cells are largely photoinactivated. Transmission electron microscopy (TEM) revealed structural changes with appearance of low density areas into the cells and irregularities in cell barriers, which could affect the normal cell membrane functionality. Also, damages on the cell-wall were not detected by scanning electron microscopy (SEM) and release of intracellular biopolymers was not found after PDI. These results indicate that the photodynamic activity of these cationic porphyrins produces DNA photodamage after a long period of irradiation. Therefore, an interference with membrane functions could be the main cause of E. coli photoinactivation upon short PDI treatments.
Quick reaction by microwave irradiation promotes nucleophilic substitution by thermally induced electron transfer mechanism and allows to synthesize deoxibenzoin and indol heterocycles derivates by inter or intramolecular ring closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.