The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltagedependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1.
SummaryMitophagy is central to mitochondrial and cellular homeostasis and operates via the PINK1/Parkin pathway targeting mitochondria devoid of membrane potential (ΔΨm) to autophagosomes. Although mitophagy is recognized as a fundamental cellular process, selective pharmacologic modulators of mitophagy are almost nonexistent. We developed a compound that increases the expression and signaling of the autophagic adaptor molecule P62/SQSTM1 and forces mitochondria into autophagy. The compound, P62-mediated mitophagy inducer (PMI), activates mitophagy without recruiting Parkin or collapsing ΔΨm and retains activity in cells devoid of a fully functional PINK1/Parkin pathway. PMI drives mitochondria to a process of quality control without compromising the bio-energetic competence of the whole network while exposing just those organelles to be recycled. Thus, PMI circumvents the toxicity and some of the nonspecific effects associated with the abrupt dissipation of ΔΨm by ionophores routinely used to induce mitophagy and represents a prototype pharmacological tool to investigate the molecular mechanisms of mitophagy.
The actin cytoskeleton executes a broad range of essential functions within a living cell. The dynamic nature of the actin polymer is modulated to facilitate specific cellular processes at discrete locations by actin-binding proteins (ABPs), including the formins and tropomyosins (Tms). Formins nucleate actin polymers, while Tms are conserved dimeric proteins that form polymers along the length of actin filaments. Cells possess different Tm isoforms, each capable of differentially regulating the dynamic and functional properties of the actin polymer. However, the mechanism by which a particular Tm localizes to a specific actin polymer is unknown. Here we show that specific formin family members dictate which Tm isoform will associate with a particular actin filament to modulate its dynamic and functional properties at specific cellular locations. Exchanging the localization of the fission yeast formins For3 and Cdc12 results in an exchange in localizations of Tm forms on actin polymers. This nucleator-driven switch in filament composition is reflected in a switch in actin dynamics, together with a corresponding change in the filament's ability to regulate ABPs and myosin motor activity. These data establish a role for formins in dictating which specific Tm variant will associate with a growing actin filament and therefore specify the functional capacity of the actin filaments that they create.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.