In many marine environments, a voltage gradient exists across the water sediment interface resulting from sedimentary microbial activity. Here we show that a fuel cell consisting of an anode embedded in marine sediment and a cathode in overlying seawater can use this voltage gradient to generate electrical power in situ. Fuel cells of this design generated sustained power in a boat basin carved into a salt marsh near Tuckerton, New Jersey, and in the Yaquina Bay Estuary near Newport, Oregon. Retrieval and analysis of the Tuckerton fuel cell indicates that power generation results from at least two anode reactions: oxidation of sediment sulfide (a by-product of microbial oxidation of sedimentary organic carbon) and oxidation of sedimentary organic carbon catalyzed by microorganisms colonizing the anode. These results demonstrate in real marine environments a new form of power generation that uses an immense, renewable energy reservoir (sedimentary organic carbon) and has near-immediate application.
Geobacteracea are distinct for their ability to reduce insoluble oxidants including minerals and electrodes without apparent reliance on soluble extracellular electron transfer (ET) mediators. This property makes them important anode catalysts in new generation microbial fuel cells (MFCs) because it obviates the need to replenish ET mediators otherwise necessary to sustain power. Here we report cyclic voltammetry (CV) of biofilms of wild type (WT) and mutant G. sulfurreducens strains grown on graphite cloth anodes acting as electron acceptors with acetate as the electron donor. Our analysis indicates that WT biofilms contain a conductive network of bound ET mediators in which OmcZ (outer membrane c-type cytochrome Z) participates in homogeneous ET (through the biofilm bulk) while OmcB mediates heterogeneous ET (across the biofilm/electrode interface); that type IV pili are important in both reactions; that OmcS plays a secondary role in homogenous ET; that OmcE, important in Fe(III) oxide reduction, is not involved in either reaction; that catalytic current is limited overall by the rate of microbial uptake of acetate; that protons generated from acetate oxidation act as charge compensating ions in homogenous ET; and that homogenous ET, when accelerated by fast voltammetric scan rates, is limited by diffusion of protons within the biofilm. These results provide the first direct electrochemical evidence substantiating utilization of bound ET mediators by Geobacter biofilms and the distinct roles of OmcB and OmcZ in the extracellular ET properties of anode-reducing G. sulfurreducens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.