The Membrane‐Interface Probe and Hydraulic Profiling Tool (MiHpt) is a direct push probe that includes both the membrane interface probe (MIP) and hydraulic profiling tool (HPT) sensors. These direct push logging tools were previously operated as separate logging systems for subsurface investigation in unconsolidated formations. By combining these two probes into one logging system the field operator obtains useful data about the distribution of both volatile organic contaminants (VOCs) and relative formation permeability in a single boring. MiHpt logging was conducted at a chlorinated VOC contaminated site in Skuldelev, Denmark, to evaluate performance of the system. Formation cores and discrete interval slug tests are used to assess use of the HPT and electrical conductivity (EC) logs for lithologic and hydrostratigraphic interpretation. Results of soil and groundwater sample analyses are compared to the adjacent MiHpt halogen specific detector (XSD) logs to evaluate performance of the system to define contaminant distribution and relative concentrations for the observed VOCs. Groundwater profile results at moderate to highly contaminated locations were found to correlate well with the MiHpt‐XSD detector responses. In general, soil sample results corresponded with detector responses. However, the analyses of saturated coarse‐grained soils at the site proved to be unreliable as demonstrated by high RPDs for duplicate samples. The authors believe that this is due to pore water drainage observed from these cores during sampling. Additionally, a cross section of HPT pressure and MiHpt‐XSD detector logs provides insight into local hydrostratigraphy and formation control on contaminant migration.
The presence of free phase petroleum fuels in the subsurface (often called light nonaqueous phase liquids/LNAPL) is a hazard in almost every town and city in the modern world. Leaking underground storage tanks and the resulting contamination and hazards have proven to be a challenge to investigate and remediate. One issue is adequately characterizing the presence and spatial extent of LNAPLs in the subsurface. Experience has shown that conventional soil coring methods and groundwater monitoring methods are fraught with limitations that can lead to significant errors in the estimation of the amount and spatial distribution of LNAPLs in the subsurface. This leads to the development of inaccurate conceptual site models and costly errors in remedial actions. A new direct push logging tool, the optical image profiler (OIP), has been developed to obtain high resolution site characterization data to more accurately define the presence and extent of LNAPLs in unconsolidated materials. The OIP system uses a downhole ultraviolet light-emitting diode to induce fluorescence of fuel LNAPL. A small complimentary metal-oxide-semiconductor camera mounted inside the probe behind a sapphire window captures photographic images of visible range fluorescence as the probe is advanced by direct push methods. In situ images of subsurface fuel fluorescence have not previously been available to the investigator and may further the understanding of LNAPL behavior. The OIP software also provides a log of percent area fluorescence (%AF) based on analysis of the images. An electrical conductivity (EC) dipole on the probe provides a log of bulk formation EC that is often a good indicator of formation lithology. The information presented here explains the basic design and operation of the OIP system in the field. Bench tests confirm the capability of the OIP system to detect a range of petroleum fuels. Field studies with the tandem EC and %AF logs are used to identify LNAPL and its migration pathways in the subsurface. These capabilities can improve the management and remediation of LNAPL-impacted sites and reduce long-term costs associated with cleanup and closure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.