In many cases of traumatic bone injury, bone grafting is required. The primary source of graft material is either autograft or allograft. The use of both material sources are well established, however, both suffer limitations. In response, many grafting alternatives are being explored. This article specifically focuses on a porous tantalum metal grafting material (Trabecular Metaltrade mark) marketed by Zimmer. Twenty-one cylindrical scaffolds were manufactured (66% to 88% porous) and tested for porosity, intrinsic permeability, tangent elastic modulus, and for yield stress and strain behavior. Scaffold microstructural geometries were also measured. Tantalum scaffold intrinsic permeability ranged from 2.1 x 10(-10) to 4.8 x 10(-10) m(2) and tangent elastic modulus ranged from 373 MPa to 2.2 GPa. Both intrinsic permeability and tangent elastic modulus closely matched porosity-matched cancellous bone specimens from a variety of species and anatomic locations. Scaffold yield stress ranged from 4 to 12.7 MPa and was comparable to bovine and human cancellous bone. Yield strain was unaffected by scaffold porosity (average = 0.010 mm/mm). Understanding these structure-function relationships will help complete the basic physical characterization of this new material and will aid in the development of realistic mathematical models, ultimately enhancing future implant designs utilizing this material.
Synthetic bone cements are commonly used in orthopaedic procedures to aid in bone regeneration following trauma or disease. Polymeric cements like PMMA provide the mechanical strength necessary for orthopaedic applications, but they are not resorbable and do not integrate with host bone. Ceramic cements have a chemical composition similar to that of bone, but their brittle mechanical properties limit their use in weight-bearing applications. In this study, we designed oxidatively degradable, polymeric bone cements with mechanical properties suitable for bone tissue engineering applications. We synthesized a novel thioketal (TK) diol, which was crosslinked with a lysine triisocyanate (LTI) prepolymer to create hydrolytically stable poly(thioketal urethane)s (PTKUR) that degrade in the oxidative environment associated with bone defects. PTKUR films were hydrolytically stable for up to 6 months, but degraded rapidly (<1 week) under simulated oxidative conditions in vitro. When combined with ceramic micro- or nanoparticles, PTKUR cements exhibited working times comparable to calcium phosphate cements and strengths exceeding those of trabecular bone. PTKUR/ceramic composite cements supported appositional bone growth and integrated with host bone near the bone-cement interface at 6 and 12 weeks post-implantation in rabbit femoral condyle plug defects. Histological evidence of osteoclast-mediated resorption of the cements was observed at 6 and 12 weeks. These findings demonstrate that a PTKUR bone cement with bone-like strength can be selectively resorbed by cells involved in bone remodeling, and thus represent an important initial step toward the development of resorbable bone cements for weight-bearing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.