Carbonate clumped-isotope geothermometry is a tool used to reconstruct formation or (re)equilibration temperatures of carbonate bearing minerals, including carbonate groups substituted into apatite. It is based on the preference for isotopologues with multiple heavy isotopes (for example, 13 C 16 O 2 18 O 2؊ groups) to be more abundant at equilibrium than would be expected if all isotopes were randomly distributed amongst all carbonate groups. Because this preference is only a function of temperature, excesses of multiply substituted species can be used to calculate formation temperatures without knowledge of the isotopic composition of water from which the mineral precipitated or other phases with which it may have equilibrated. However, the measured temperature could be modified after mineral growth if exchange of isotopes amongst carbonate groups within the mineral has occurred through internal isotope-exchange reactions. Because these exchange reactions occur through thermally activated processes, their rates depend on temperature and increase at higher temperatures. Thus internal isotope-exchange reactions could lead to effective reequilibration at high temperatures, overprinting the original temperatures recorded during mineral growth. We measured clumped-isotope temperatures in carbonate bearing minerals (including apatites) from several carbonatites to constrain the kinetics of these internal isotope-exchange reactions. We observe two key trends for clumped-isotope temperatures in carbonatites: (i) clumped-isotope temperatures of apatites and carbonate-bearing minerals decrease with increasing intrusion depth and (ii) apatites record lower clumped-isotope temperatures than carbonate minerals from the same intrusion. We additionally conducted heating experiments at different temperatures to derive the temperature dependence for the rate constants that describe the alteration of clumped-isotope temperatures with time in calcites and apatites. We find that calcites exhibit complex kinetics as has been seen in previous studies. To quantify these results, we constructed a model that incorporates both diffusion of isotopes through the crystal lattice and isotope-exchange reactions between adjacent carbonate groups. We tested this model through comparison to previous measurements of optical calcites and brachiopods and to samples with known cooling histories and find that the model is able to reasonably capture kinetic data from previous experiments and the observed clumped-isotope temperatures of calcites assuming geologically reasonable cooling rates. A similar model for apatite over-predicts the observed clumped-isotope temperatures found in natural samples; we hypothesize this discrepancy is the result of annealing of radiation damage in our experiments, which lowers the diffusivity and rate of isotope exchange of carbonate groups compared to damaged natural samples. Finally, we constructed models to explore how heating can alter recorded clumped-isotope temperatures. Our model predicts that samples change i...
Please cite this article as: Stolper, D.A., Martini, A.M., Clog, M., Douglas, P.M., Shusta, S.S., Valentine, D.L., Sessions, A.L., Eiler, J.M., Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues, Geochimica et Cosmochimica Acta (2015), doi: http://dx. Abstract: Sources of methane to sedimentary environments are commonly identified and quantified using the stable-isotopic compositions of methane. The methane "clumped-isotope geothermometer", based on the measurement of multiply substituted methane isotopologues (13 CH 3 D and 12 CH 2 D 2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic-thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure-culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (~50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.