BACKGROUND The presence of HLA haplotype DR3–DQ2 or DR4–DQ8 is associated with an increased risk of celiac disease. In addition, nearly all children with celiac disease have serum antibodies against tissue transglutaminase (tTG). METHODS We studied 6403 children with HLA haplotype DR3–DQ2 or DR4–DQ8 prospectively from birth in the United States, Finland, Germany, and Sweden. The primary end point was the development of celiac disease autoimmunity, which was defined as the presence of tTG antibodies on two consecutive tests at least 3 months apart. The secondary end point was the development of celiac disease, which was defined for the purpose of this study as either a diagnosis on biopsy or persistently high levels of tTG antibodies. RESULTS The median follow-up was 60 months (interquartile range, 46 to 77). Celiac disease autoimmunity developed in 786 children (12%). Of the 350 children who underwent biopsy, 291 had confirmed celiac disease; an additional 21 children who did not undergo biopsy had persistently high levels of tTG antibodies. The risks of celiac disease autoimmunity and celiac disease by the age of 5 years were 11% and 3%, respectively, among children with a single DR3–DQ2 haplotype, and 26% and 11%, respectively, among those with two copies (DR3–DQ2 homozygosity). In the adjusted model, the hazard ratios for celiac disease autoimmunity were 2.09 (95% confidence interval [CI], 1.70 to 2.56) among heterozygotes and 5.70 (95% CI, 4.66 to 6.97) among homozygotes, as compared with children who had the lowest-risk genotypes (DR4–DQ8 heterozygotes or homozygotes). Residence in Sweden was also independently associated with an increased risk of celiac disease autoimmunity (hazard ratio, 1.90; 95% CI, 1.61 to 2.25). CONCLUSIONS Children with the HLA haplotype DR3–DQ2, especially homozygotes, were found to be at high risk for celiac disease autoimmunity and celiac disease early in childhood. The higher risk in Sweden than in other countries highlights the importance of studying environmental factors associated with celiac disease. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others.)
Background & Aims Little is known about the pathogenic mechanisms of gluten immunogenicity in patients with celiac disease. We studied temporal associations between infections and the development of celiac disease autoimmunity, and examined effects of HLA alleles, rotavirus vaccination status, and infant feeding. Methods We monitored 6327 children in the United States and Europe carrying HLA risk genotypes for celiac disease from 1 to 4 years of age for presence of tissue transglutaminase autoantibodies (the definition of celiac disease autoimmunity), until March 31, 2015. Parental reports of gastrointestinal and respiratory infections were collected every third month from birth. We analyzed time-varying relationships among reported infections, rotavirus vaccination status, time to first introduction of gluten, breastfeeding, and risk of celiac disease autoimmunity using proportional hazard models. Results We identified 13,881 gastrointestinal infectious episodes and 79,816 respiratory infectious episodes. During the follow-up period, 732 of 6327 (11.6%) children developed celiac disease autoimmunity. A GIE increased the risk of celiac disease autoimmunity within the following 3 months by 33% (hazard ratio [HR], 1.33; 95% confidence interval [CI], 1.11–1.59). This risk increased 2-fold among children born in winter and introduced to gluten before age 6 months (HR, 2.08; 95% CI, 1.46–2.98), and increased 10-fold among children without HLA-DQ2 alleles and breastfed for fewer than 4 months (HR, 9.76; 95% CI, 3.87–24.8). Risk of celiac disease autoimmunity was reduced in children vaccinated against rotavirus and introduced to gluten before age 6 months (HR, 0.57; 95% CI, 0.36-0.88). Conclusions Gastrointestinal infections increase the risk of celiac disease autoimmunity in children with genetic susceptibility to this autoimmune disorder. The risk is modified by HLA genotype, infant gluten consumption, breastfeeding, and rotavirus vaccination, indicating complex interactions among infections, genetic factors, and diet in the etiology of celiac disease in early childhood.
; for the TEDDY Study Group IMPORTANCE High gluten intake during childhood may confer risk of celiac disease. OBJECTIVES To investigate if the amount of gluten intake is associated with celiac disease autoimmunity and celiac disease in genetically at-risk children. DESIGN, SETTING, AND PARTICIPANTS The participants in The Environmental Determinants of Diabetes in the Young (TEDDY), a prospective observational birth cohort study designed to identify environmental triggers of type 1 diabetes and celiac disease, were followed up at 6 clinical centers in Finland, Germany, Sweden, and the United States. Between 2004 and 2010, 8676 newborns carrying HLA antigen genotypes associated with type 1 diabetes and celiac disease were enrolled. Screening for celiac disease with tissue transglutaminase autoantibodies was performed annually in 6757 children from the age of 2 years. Data on gluten intake were available in 6605 children (98%) by September 30, 2017. EXPOSURES Gluten intake was estimated from 3-day food records collected at ages 6, 9, and 12 months and biannually thereafter until the age of 5 years. MAIN OUTCOMES AND MEASURES The primary outcome was celiac disease autoimmunity, defined as positive tissue transglutaminase autoantibodies found in 2 consecutive serum samples. The secondary outcome was celiac disease confirmed by intestinal biopsy or persistently high tissue transglutaminase autoantibody levels. RESULTS Of the 6605 children (49% females; median follow-up: 9.0 years [interquartile range, 8.0-10.0 years]), 1216 (18%) developed celiac disease autoimmunity and 447 (7%) developed celiac disease. The incidence for both outcomes peaked at the age of 2 to 3 years. Daily gluten intake was associated with higher risk of celiac disease autoimmunity for every 1-g/d increase in gluten consumption (hazard ratio [HR], 1.30 [95% CI, 1.22-1.38]; absolute risk by the age of 3 years if the reference amount of gluten was consumed, 28.1%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 34.2%; absolute risk difference, 6.1% [95% CI, 4.5%-7.7%]). Daily gluten intake was associated with higher risk of celiac disease for every 1-g/d increase in gluten consumption (HR, 1.50 [95% CI, 1.35-1.66]; absolute risk by age of 3 years if the reference amount of gluten was consumed, 20.7%; absolute risk if gluten intake was 1-g/d higher than the reference amount, 27.9%; absolute risk difference, 7.2% [95% CI, 6.1%-8.3%]). CONCLUSIONS AND RELEVANCE Higher gluten intake during the first 5 years of life was associated with increased risk of celiac disease autoimmunity and celiac disease among genetically predisposed children.
OBJECTIVES: The goal of this study was to determine whether age at introduction to gluten was associated with risk for celiac disease (CD) in genetically predisposed children. METHODS: TEDDY (The Environmental Determinants of Diabetes in the Young) is a prospective birth cohort study. Newborn infants (N = 6436) screened for high-risk HLA-genotypes for CD were followed up in Finland, Germany, Sweden, and the United States. Information about infant feeding was collected at clinical visits every third month. The first outcome was persistent positive for tissue transglutaminase autoantibodies (tTGA), the marker for CD. The second outcome was CD, defined as either a diagnosis based on intestinal biopsy results or on persistently high levels of tTGA. RESULTS: Swedish children were introduced to gluten earlier (median: 21.7 weeks) compared with children from Finland (median: 26.1 weeks), Germany, and the United States (both median: 30.4 weeks) (P < .0001). During a median follow-up of 5.0 years (range: 1.7–8.8 years), 773 (12%) children developed tTGA and 307 (5%) developed CD. Swedish children were at increased risk for tTGA (hazard ratio: 1.74 [95% CI: 1.47–2.06]) and CD (hazard ratio: 1.76 [95% CI: 1.34–2.24]) compared with US children, respectively (P < .0001).Gluten introduction before 17 weeks or later than 26 weeks was not associated with increased risk for tTGA or CD, adjusted for country, HLA, gender, and family history of CD, neither in the overall analysis nor on a country-level comparison. CONCLUSIONS: In TEDDY, the time to first introduction to gluten introduction was not an independent risk factor for developing CD.
Objectives-Measurement of transglutaminase autoantibodies (TGAA) is considered to be the most efficient single serologic test for celiac disease (CD) by the American Gastroenterological Association Institute. We hypothesized that a large international collaborative effort toward improving and standardizing TGAA measurement is both feasible and necessary. The primary aim of this workshop is to compare TGAA assays among various research and clinical laboratories and examine assay concordance and improve (and eventually standardize) the TGAA assay. Guarantor of the article: Edwin Liu, MD. Methods Specific author contributions:Marcella Li: performed the bulk of the labor with organizing/aliquoting the sera, shipping, and performing related assays; Liping Yu: responsible for the quality control of our radioassay and also helped with data analysis, trouble shooting, planning details of the workshop. Our laboratory was used as a "reference lab"; Claudio Tiberti: contributed sera to the workshop, helped plan initial stages of workshop and paper preparation; Margherita Bonamico: participated in data analysis and paper preparation; Iman Taki: in charge of collecting the bulk of our sera at the institution and organizing the workshop; Dongmei Miao: technician performed radioassay and also performed the assay to serve as a reference for other laboratories; Joseph A. Murray: organized the workshop and paper preparation; Marian J. Rewers: contributed sera for our laboratory and helped plan the workshop; Edward J. Hoffenberg: mentor for the senior author, provided help in planning the workshop and recruiting participants; Daniel Agardh: contributed sera for the workshop, data analysis, and paper preparation; Patricia Mueller: contributed the control sera for the workshop, data analysis, and paper preparation; Martin Stern and Ezio Bonifacio: planned the details of the workshop, data analysis, and paper preparation; Edwin Liu: organized the workshop, communication with participants, overseeing our laboratory, data analysis, and paper preparation. NIH Public Access Author ManuscriptAm J Gastroenterol. Author manuscript; available in PMC 2010 July 15. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript radiobinding assays. A total of 150 serum samples were distributed to each laboratory, with each laboratory receiving an equal aliquot that was coded and blinded, composed of 100 healthy control sera and 50 CD sera.Results-Laboratory sensitivity ranged from 69% to 93% and specificity ranged from 96% to 100%. By receiver operator characteristic analysis, the area under the curve (C index) ranged from 0.9488 to 0.9904. When analyzing for linear correlation, r-squared was as high as 0.8882 but as low as 0.4244 for the celiac samples between different laboratories performing ELISA.Conclusions-This transglutaminase autoantibody workshop allows for larger-scale international participation for the purposes of improving and eventually standardizing the TGAA assay with subsequent workshops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.