Interferons play a key role in fish resistance to viral infections by inducing the expression of antiviral proteins, such as Mx. The aim of the present study was to test the antiviral activity of the Senegalese sole Mx protein (SsMx) against RNA and DNA viruses pathogenic to fish, i.e. the infectious pancreatic necrosis virus (IPNV, dsRNA), the viral haemorrhagic septicaemia virus (VHSV, ssRNA), and the European sheatfish virus (ESV, dsDNA), using a CHSE-214 cell clone expressing this antiviral protein. A strong inhibition of IPNV and VHSV replication was recorded in SsMx-expressing cells, as has been shown by the virus yield reduction and the decrease in the synthesis of the viral RNA encoding the polyprotein (for IPNV) and the nucleoprotein (for VHSV). The titres of these viruses replicating on SsMx-expressing cells were 100 times lower than those recorded on non-transfected cells. In contrast, SsMx did not inhibit ESV replication since no significant differences were observed regarding the virus yield or the major capsid protein gene transcription in transfected and non-transfected cells.
Senegalese sole is susceptible to marine VHSV isolates but is not affected by freshwater isolates, which may indicate differences regarding virus-host immune system interaction. IFN I induces an antiviral state in fish, stimulating the expression of genes encoding antiviral proteins (ISG). In this study, the stimulation of the Senegalese sole IFN I by VHSV infections has been evaluated by the relative quantification of the transcription of several ISG (Mx, Isg15 and Pkr) after inoculation with marine (pathogenic) and freshwater (non-pathogenic) VHSV isolates. Compared to marine VHSV, lower levels of RNA of the freshwater VHSV induced transcription of ISG to similar levels, with the Isg15 showing the highest fold induction. The protective role of the IFN I system was evaluated in poly I:C-inoculated animals subsequently challenged with VHSV isolates. The cumulative mortality caused by the marine isolate in the control group was 68%, whereas in the poly I:C-stimulated group was 5%. The freshwater VHSV isolate did not cause any mortality. Furthermore, viral RNA fold change and viral titers were lower in animals from the poly I:C + VHSV groups than in the controls. The implication of the IFN I system in the protection observed was confirmed by the transcription of the ISG in animals from the poly I:C + VHSV groups. However, the marine VHSV isolate exerts a negative effect on the ISG transcription at 3 and 6 h post-inoculation (hpi), which is not observed for the freshwater isolate. This difference might be partly responsible for the virulence shown by the marine isolate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.