Brazil is the world’s largest sugarcane producer with projections for expanding the current area by 30% in the coming years, mainly in areas previously occupied by pastures. We assess soil water changes induced by land-use change (LUC) for sugarcane expansion in the central-south region of Brazil. For that purpose, soil samples were collected in a typical LUC sequence (native vegetation–pasture–sugarcane) in two contrasting soil textures (i.e., sandy and clayey). Soil hydro-physical properties such as pores size distribution, bulk density, soil water content, water tension, and drainage time at field capacity, plant-available water, and S-index were analyzed. Our data showed that long-term LUC from native vegetation to extensive pasture induced severe degradation in soil physical quality and soil water dynamics. However, conventional tillage used during conversion from pasture to sugarcane did not cause additional degradation on soil structure and soil water dynamics. Over time, sugarcane cultivation slightly impaired soil water and physical conditions, but only in the 10–20 cm layer in both soils. Therefore, we highlight that sustainable management practices to enhance soil physical quality and water dynamics in sugarcane fields are needed to prevent limiting conditions to plant growth and contribute to delivering other ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.