In this work, we uncover a universal relaxation mechanism of pinned density waves, combining Gauge/Gravity duality and effective field theory techniques. Upon breaking translations spontaneously, new gapless collective modes emerge, the Nambu-Goldstone bosons of broken translations.When translations are also weakly broken (eg by disorder or lattice effects), these phonons are pinned with a mass m and damped at a rate Ω, which we explicitly compute. This contribution to Ω is distinct from that of topological defects. We show that Ω Gm 2 Ξ, where G is the shear modulus and Ξ is related to a diffusivity of the purely spontaneous state. This result follows from the smallness of the bulk and shear moduli, as would be the case in a phase with fluctuating translational order. At low temperatures, the collective modes relax quickly into the heat current, so that late time transport is dominated by the thermal diffusivity. In this regime, the resistivity in our model is linear in temperature and the ac conductivity displays a significant rearranging of the degrees of freedom, as spectral weight is shifted from an off-axis, pinning peak to a Drude-like peak.These results could shed light on transport properties in cuprate high T c superconductors, where quantum critical behavior and translational order occur over large parts of the phase diagram and transport shows qualitatively similar features.
We study systematically the open string modes of a general class of BPS intersections of branes. We work in the approximation in which one of the branes is considered as a probe embedded in the near-horizon geometry generated by the other type of branes. We mostly concentrate on the D3-D5 and D3-D3 intersections, which are dual to defect theories with a massive hypermultiplet confined to the defect. In these cases we are able to obtain analytical expressions for the fluctuation modes of the probe and to compute the corresponding mass spectra of the dual operators in closed form. Other BPS intersections are also studied and their fluctuation modes and spectra are found numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.