Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS) techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI). Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly OPEN ACCESSWater 2015, 7 3532 susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.
West Africa has been described as a hotspot of climate change. The reliance on rain-fed agriculture by over 65% of the population means that vulnerability to climatic hazards such as droughts, rainstorms and floods will continue. Yet, the vulnerability and risk levels faced by different rural social-ecological systems (SES) affected by multiple hazards are poorly understood. To fill this gap, this study quantifies risk and vulnerability of rural communities to drought and floods. Risk is assessed using an indicator-based approach. A stepwise methodology is followed that combines participatory approaches with statistical, remote sensing and Geographic Information System techniques to develop community level vulnerability indices in three watersheds (Dano, Burkina Faso; Dassari, Benin; Vea, Ghana). The results show varying levels of risk profiles across the three watersheds. Statistically significant high levels of mean risk in the Dano area of Burkina Faso are found whilst communities in the Dassari area of Benin show low mean risk. The high risk in the Dano area results from, among other factors, underlying high exposure to droughts and rainstorms, longer dry season duration, low caloric intake per capita, and poor local institutions. The study introduces the concept of community impact score (CIS) to validate the indicator-based risk and vulnerability modelling. The CIS measures the cumulative impact of the occurrence of multiple hazards over five years. 65.3% of the variance in observed impact of hazards/CIS was explained by the risk models and communities with high simulated disaster risk generally follow areas with high observed disaster impacts. Results from this study will help disaster managers to better understand disaster risk and develop appropriate, inclusive and well integrated mitigation and adaptation plans at the local level. It fulfills the increasing need to balance global/regional assessments with community level assessments where major decisions against risk are actually taken and implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.