Background:The distribution of muscle spindles (Sps) in a small muscle of simple architecture, the capsularis at the cat's hip joint, was quantified to reveal the patterns of proprioceptive representation in the transverse and sagittal planes as well as to model the effect a local disturbance in muscle length would have on total Sp discharge.Methods: Locations in serial cross-sections of the 32 and 38 Sps in 2 muscles, 1 perfused with the hip joint flexed and the other extended, were plotted, and their patterns of integrated sensitivity calculated assuming that (1) the discharge rate of a Sp afferent varies linearly with change in length along the Sp's axis, and (2) that within a local disturbance produced by contraction of a motor unit (MU), lengths decrease either linearly or as the square of the distance from its center.Results: The isomeric pattern of ''integrated, total Sp representation on cross-section'' showed two peaks of sensitivity in the half of the muscle that had been next to the joint capsule, offset by low representation in a small, central area and along the extensive zone bordering the laterally facing ''superficial surface.'' The equivalent radius of an idealized symmetrical MU territory was estimated from distributions of the few fast, oxidative-glycolytic fibers found in two muscles, and the effect of a MU's contraction on net Sp discharge predicted when the unit was positioned at distinctive sites within the pattern. As an index of Ia and II afferent representation in the sagittal plane, the distribution of the nucleated regions of Sps and the summed lengths of segments of Sp axial bundles and capsules, respectively, within successive 1-mm segments of the muscle were graphed.Conclusions: The longitudinal representation and structure of the muscle are not suited for reflex adjustment of differences in length along the muscle. The isomeric pattern of high relief in the transverse plane suggests that in this ϳ0.2 g muscle, the localization of myotatic reflexes might be accommodated but the need for adjustment in activation of MUs seems minimal. This is because the muscle is not compartmentalized, its fibers extend between the muscle's origin and insertion, their angle of pinnation is low, and greater than 90% are of slow type. The distribution of Sps is consistent with gauging length of the entire muscle and hence angulation at the hip joint. Anat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.