Reactive oxygen species (ROS) have been extensively studied in the induction of inflammation and tissue damage, especially as it relates to aging. In more recent years, ROS have been implicated in the pathogenesis of autoimmune diseases. Here, ROS accumulation leads to apoptosis and autoantigen structural changes that result in novel specificities. ROS have been implicated not only in the initiation of the autoimmune response but also in its amplification and spreading to novel epitopes, through the unmasking of cryptic determinants. This review will examine the contribution of ROS to the pathogenesis of four organ specific autoimmune diseases (Hashimoto thyroiditis, inflammatory bowel disease, multiple sclerosis, and vitiligo), and compare it to that of a better characterized systemic autoimmune disease (rheumatoid arthritis). It will also discuss tobacco smoking as an environmental factor endowed with both pro-oxidant and anti-oxidant properties, thus capable of differentially modulating the autoimmune response.
Hyaluronic acid (HA) is increasingly used for a number of medical device applications. Since the chemical structure of HA is identical no matter its bacterial or animal origin, it should be the ideal biomaterial. However, short term transient inflammatory reactions are common, while rare long-term adverse events may correlate with subclinical chronic inflammation. Concern has been raised that low molecular weight components or degradation fragments from implanted HA may directly stimulate inflammatory reactions. This study examined a panel of HA molecular weights from the unitary disaccharide up to 1.7 x 10(6) Dalton lengths, in which endotoxin was assayed at a very low level (less than 0.03 EU/mg). The murine cell line RAW 264.7, rat splenocytes, and rat adherent differentiated primary macrophages were assayed for nitric oxide production under a variety of inflammatory conditions plus or minus HA. Under the highest inflammatory states, nitric oxide production was mildly suppressed by HMW-HA while slightly augmented by LMW-HA at mg/mL concentrations. However, at micromolar concentrations fragments below 5000 Daltons, thought to have drug-like qualities, were without effect. These data support the hypothesis that if endotoxin is reduced to an extremely low level, LMW-HA may not directly provoke normal tissue macrophage-mediated inflammatory reactions.
This study examined the effect of hyaluronan (HA) molecular weight on immune response. HA with molecular weights ranging from the unitary disaccharide unit (400 Da) up to 1.7 × 10(6) Da and with very low endotoxin contamination level (less than 0.03 EU/mg) was used. Primary human monocyte/macrophage cultures were assayed for IL-1β production under a variety of inflammatory conditions with or without HA. Under the highest inflammatory states, production of interleukin 1β (IL-1β) was suppressed in the presence of high molecular weight hyaluronan (HMW-HA) and in the presence of low molecular weight hyaluronan (LMW-HA) at mg/mL concentrations. There was variability in the sensitivity of the response to HA fragments with MW below 5000 Da at micromolar concentrations. There was variability in IL-1β cytokine productions from donor to donor in unstimulated human cell cultures. This study supplements our previous published study that investigated the immunogenic effect of HA molecular weights using murine cell line RAW264.6, rat splenocytes, and rat adherent differentiated primary macrophages. These data support the hypothesis that if the amount of endotoxin is reduced to an extremely low level, LMW-HA may not directly provoke normal tissue macrophage-mediated inflammatory reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.