The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajos and Caxiuana), all major sites of the Large-Scale Biosphere-Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1 +/- 1.4 Mg C ha(-1) yr(-1) (Manaus), 14.4 +/- 1.3 Mg C ha(-1) yr(-1) (Tapajos) and 10.0 +/- 1.2 Mg C ha(-1) yr(-1) (Caxiuana). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajos has significantly more plant-available phosphorus and calcium. Autotrophic respiration at all three sites (14.9-21.4 Mg C ha yr(-1)) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon-use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34 +/- 0.10) and Caxiuana (0.32 +/- 0.07), but may be higher at Tapajos (0.49 +/- 0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests
Summary At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long‐term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. Results are presented from a 7 yr TFE study at Caxiuanã National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and above‐ground biomass. Tree mortality in the TFE plot over the experimental period was 2.5% yr−1, compared with 1.25% yr−1 in a nearby control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm diameter at breast height (dbh)) size class (4.1% yr−1 in the TFE and 1.4% yr−1 in the control). Wood production in the TFE plot was c. 30% lower than in the control plot. Together, these changes resulted in a loss of 37.8 ± 2.0 Mg carbon (C) ha−1 in the TFE plot (2002–2008), compared with no change in the control. These results are remarkably consistent with those from another TFE (at Tapajós National Forest), suggesting that eastern Amazonian forests may respond to prolonged drought in a predictable manner.
Summary• The flux of carbon from tree photosynthesis through roots to ectomycorrhizal (ECM) fungi and other soil organisms is assumed to vary with season and with edaphic factors such as nitrogen availability, but these effects have not been quantified directly in the field.• To address this deficiency, we conducted high temporal-resolution tracing of 13 C from canopy photosynthesis to different groups of soil organisms in a young boreal Pinus sylvestris forest.• There was a 500% higher below-ground allocation of plant C in the late (August) season compared with the early season (June). Labelled C was primarily found in fungal fatty acid biomarkers (and rarely in bacterial biomarkers), and in Collembola, but not in Acari and Enchytraeidae. The production of sporocarps of ECM fungi was totally dependent on allocation of recent photosynthate in the late season. There was no short-term (2 wk) effect of additions of N to the soil, but after 1 yr, there was a 60% reduction of below-ground C allocation to soil biota.• Thus, organisms in forest soils, and their roles in ecosystem functions, appear highly sensitive to plant physiological responses to two major aspects of global change: changes in seasonal weather patterns and N eutrophication.
Summary1. Despite recent interest in linkages between above-and below-ground communities and their consequences for ecosystem processes, much remains unknown about their responses to long-term ecosystem change. We synthesize multiple lines of evidence from a long-term 'natural experiment' to illustrate how ecosystem retrogression (the decline in ecosystem process rates due to long-term absence of major disturbance) drives vegetation change, and thus above-ground and below-ground carbon (C) sequestration, and communities of consumer biota. 2. Our study system involves 30 islands in Swedish boreal forest that form a 5000-year, fire-driven retrogressive chronosequence. Here, retrogression leads to lower plant productivity and slower decomposition and a community shift from plants with traits associated with resource acquisition to those linked with resource conservation. 3. We present consistent evidence that above-ground ecosystem C sequestration declines, while below-ground and total C storage increases linearly for at least 5000 years following fire absence. This increase is driven primarily by changes in vegetation characteristics, impairment of decomposer organisms and absence of humus combustion. 4. Data from contrasting trophic groups show that during retrogression, biomass or abundance of plants and decomposer biota decreases, while that of above-ground invertebrates and birds increases, due to different organisms accessing resources via distinct energy channels. Meanwhile, diversity measures of vascular plants and above-ground (but not below-ground) consumers respond positively to retrogression. 5. We show that taxonomic richness of plants and above-ground consumers are positively correlated with total ecosystem C storage, suggesting that conserving old-growth forests simultaneously maximizes biodiversity and C sequestration. However, we find little observational or experimental evidence that plant diversity is a major driver of ecosystem C storage on the islands relative to other biotic and abiotic factors. 6. Synthesis. Our study reveals that across contrasting islands differing in exposure to a key extrinsic driver (historical disturbance regime and resulting retrogression), there are coordinated responses of soil fertility, vegetation, consumer communities and ecosystem C sequestration, which all feed back to one another. It also highlights the value of well-replicated natural experiments for tackling questions about above-ground-below-ground linkages over temporal and spatial scales that are otherwise unachievable.
Summary• Half of the biological activity in forest soils is supported by recent tree photosynthate, but no study has traced in detail this flux of carbon from the canopy to soil microorganisms in the field.• Using 13 CO 2 , we pulse-labelled over 1.5 h a 50-m 2 patch of 4-m-tall boreal Pinus sylvestris forest in a 200-m 3 chamber.• Tracer levels peaked after 24 h in soluble carbohydrates in the phloem at a height of 0.3 m, after 2-4 d in soil respiratory efflux, after 4-7 d in ectomycorrhizal roots, and after 2-4 d in soil microbial cytoplasm. Carbon in the active pool in needles, in soluble carbohydrates in phloem and in soil respiratory efflux had half-lives of 22, 17 and 35 h, respectively. Carbon in soil microbial cytoplasm had a half-life of 280 h, while the carbon in ectomycorrhizal root tips turned over much more slowly. Simultaneous labelling of the soil with showed that the ectomycorrhizal roots, which were the strongest sinks for photosynthate, were also the most active sinks for soil nitrogen.• These observations highlight the close temporal coupling between tree canopy photosynthesis and a significant fraction of soil activity in forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.