Background Schistosomiasis is a socioeconomically devastating parasitic infection afflicting hundreds of millions of people and animals worldwide. It is the most important helminth infection, and its treatment relies solely on the drug praziquantel. Oral H1-antihistamines are available worldwide, and these agents are among the most widely used of all medications in children and adults. Given the importance of the drug repositioning strategy, we evaluated the antischistosomal properties of the H1-antihistamine drugs commonly used in clinical practices. Methods Twenty-one antihistamine drugs were initially screened against adult schistosomes ex vivo. Subsequently, we investigated the anthelmintic properties of these antihistamines in a murine model of schistosomiasis for both early and chronic S. mansoni infections at oral dosages of 400 mg/kg single dose or 100 mg/kg daily for five consecutive days. We also demonstrated and described the ability of three antihistamines to induce tegumental damage in schistosomes through the use of scanning electron microscopy. Results From phenotypic screening, we found that desloratadine, rupatadine, promethazine, and cinnarizine kill adult S. mansoni in vitro at low concentrations (5–15 µM). These results were further supported by scanning electron microscopy analysis. In an animal model, rupatadine and cinnarizine revealed moderate worm burden reductions in mice harboring either early or chronic S. mansoni infection. Egg production, a key mechanism for both transmission and pathogenesis, was also markedly inhibited by rupatadine and cinnarizine, and a significant reduction in hepatomegaly and splenomegaly was recorded. Although less effective, desloratadine also revealed significant activity against the adult and juvenile parasites. Conclusions Although the worm burden reductions achieved are all only moderate, comparatively, treatment with any of the three antihistamines is more effective in early infection than praziquantel. On the other hand, the clinical use of H1-antihistamines for the treatment of schistosomiasis is highly unlikely.
Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 μg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.
The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed, and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility and viability, and it induced severe tegumental damage in schistosomes. The 50% lethal concentration (LC50) of the drug was 5.84 μM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg of body weight for five successive days at different intervals from the time of infection for the evaluation of the stage-specific susceptibility (prepatent and patent infections). Various parasitological criteria indicated the following in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, hepatomegaly, and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (>90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.
Since praziquantel is the only drug available to treat schistosomiasis, a neglected parasitic disease that affects more than 240 million people worldwide, there is an urgent demand for new antischistosomal agents. Natural compound-loaded nanoparticles have recently emerged as a promising alternative for the treatment of schistosomiasis. Carvacrol is an antimicrobial monoterpene present in the essential oil extracted from several plants, especially oregano (Origanum vulgare). In this study, a carvacrol nanoemulsion (CVNE) was prepared, characterized, and administered orally (200 mg/kg) in a mouse infected with either immature (prepatent infection) or adult (patent infection) Schistosoma mansoni. For comparison, data obtained with an unloaded nanoemulsion (blank formulation), free carvacrol, and the drug of reference praziquantel are also presented. CVNE was more effective than free carvacrol in reducing the worm burden and egg production in both patent and prepatent infections. Favorably, CVNE had a high effect in terms of reducing the number of worms and eggs (85%–90%) compared with praziquantel (∼30%) in prepatent infection. In tandem, carvacrol-loaded nanoemulsion markedly improved antischistosomal activity, showing efficiency in reducing worm and egg burden, and thus it may be a promising delivery system for the treatment of schistosomiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.