A systematic approach is described for building validated PLS models that predict cholesterol and triglyceride concentrations in lipoprotein subclasses in fasting serum from a normolipidemic, healthy population. The PLS models were built on diffusion-edited (1)H NMR spectra and calibrated on HPLC-derived lipoprotein subclasses. The PLS models were validated using an independent test set. In addition to total VLDL, LDL, and HDL lipoproteins, statistically significant PLS models were obtained for 13 subclasses, including 5 VLDLs (particle size 64-31.3 nm), 4 LDLs (particle size 28.6-20.7 nm) and 4 HDLs (particle size 13.5-9.8 nm). The best models were obtained for triglycerides in VLDL (0.82 < Q(2) <0.92) and HDL (0.69 < Q(2) <0.79) subclasses and for cholesterol in HDL subclasses (0.68 < Q(2) <0.96). Larger variations in the model performance were observed for triglycerides in LDL subclasses and cholesterol in VLDL and LDL subclasses. The potential of the NMR-PLS model was assessed by comparing the LPD of 52 subjects before and after a 4-week treatment with dietary supplements that were hypothesized to change blood lipids. The supplements induced significant (p < 0.001) changes on multiple subclasses, all of which clearly exceeded the prediction errors.
Total cholesterol concentration in plasma has long been known to correlate with cardiovascular disease risk. Subsequent investigations have distinguished more specifi c fractions of plasma cholesterol to attribute this risk to. First, LDL cholesterol was identifi ed as a risk factor and later the size distribution within that fraction was found to be of importance [for a historical review, see Ref.( 1 )]. Based on these fi ndings, an 'atherogenic lipoprotein phenotype' has been defi ned, which takes into account a particle size profi le within the LDL class ( 2 ). In addition to the cholesterol-based risk factors, apolipoprotein (Apo) measurements, such as ApoB or the ApoB/ApoA-I ratio, have been found to indicate atherosclerosis risk (3)(4)(5).Further improvements in risk assessment will primarily result from a more detailed understanding of lipoprotein physiology. To increase quantitative insight, various multi-compartmental models have been developed to analyze experiments with radioactive or stable isotope labeled lipoprotein constituents. The fi rst models describe the fl uxes of ApoB between lipoprotein fractions ( 6-8 ) with subsequent refi nements allowing better data interpretation ( 9-15 ). Other models describe the fl uxes of triglycerides through the lipoprotein fractions (16)(17)(18)(19)(20) Abstract Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is diffi cult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profi ler) and evaluated its feasibility. The framework was tested using existing stable isotope fl ux data. The model framework implementation we present here reproduced the fl ux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profi ler can be applied for analyzing detailed lipoprotein size profi le data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given.
Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates.
Fibrates lower triglycerides and raise HDL cholesterol in dyslipidemic patients, but show heterogeneous treatment response. We used k-means clustering to identify three representative NMR lipoprotein profiles for 775 subjects from the GOLDN population, and study the response to fenofibrate in corresponding subgroups. The subjects in each subgroup showed differences in conventional lipid characteristics and in presence/absence of cardiovascular risk factors at baseline; there were subgroups with a low, medium and high degree of dyslipidemia. Modeling analysis suggests that the difference between the subgroups with low and medium dyslipidemia is influenced mainly by hepatic uptake dysfunction, while the difference between subgroups with medium and high dyslipidemia is influenced mainly by extrahepatic lipolysis disfunction. The medium and high dyslipidemia subgroups showed a positive, yet distinct lipid response to fenofibrate treatment. When comparing our subgroups to known subgrouping methods, we identified an additional 33% of the population with favorable lipid response to fenofibrate compared to a standard baseline triglyceride cutoff method. Compared to a standard HDL cholesterol cutoff method, the addition was 18%. In conclusion, by using constructing subgroups based on representative lipoprotein profiles, we have identified two subgroups of subjects with positive lipid response to fenofibrate therapy and with different underlying disturbances in lipoprotein metabolism. The total subgroup with positive lipid response to fenofibrate is larger than subgroups identified with baseline triglyceride and HDL cholesterol cutoffs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.