The protein pattern of healthy human eccrine sweat was investigated and 10 major proteins were detected from which apolipoprotein D, lipophilin B, and cathepsin D (CatD) were identified for the first time in human eccrine sweat. We focused our studies on the function of the aspartate protease CatD in sweat. In vitro digestion experiments using a specific fluorescent CatD substrate showed that CatD is enzymatically active in human sweat. To identify potential substrates of CatD in human eccrine sweat LL-37 and DCD-1L, two antimicrobial peptides present in sweat, were digested in vitro with purified CatD. LL-37 was not significantly digested by CatD, whereas DCD-1L was cleaved between Leu 44 and Asp 45 and between Leu 29 and Glu 30 almost completely. The DCD-1L-derived peptides generated in vitro by CatD were also found in vivo in human sweat as determined by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Furthermore, besides the CatD-processed peptides we identified additionally DCD-1L-derived peptides that are generated upon cleavage with a 1,10-phenanthroline-sensitive carboxypeptidase and an endoprotease. Taken together, proteolytic processing generates 12 DCD-1L-derived peptides. To elucidate the functional significance of postsecretory processing the antimicrobial activity of three CatDprocessed DCD-1L peptides was tested. Whereas two of these peptides showed no activity against Gram-positive and Gram-negative bacteria, one DCD-1L-derived peptide showed an even higher activity against Escherichia coli than DCD-1L. Functional analysis indicated that proteolytic processing of DCD-1L by CatD in human sweat modulates the innate immune defense of human skin.
SummaryThe serine protease cathepsin (Cat) G dominates the proteolytic processing of the multiple sclerosis (MS)-associated autoantigen myelin basic protein (MBP) in lysosomes from primary human B cells and dendritic cells. This is in contrast to B-lymphoblastoid cell lines, where the asparagine endopeptidase (AEP) is responsible for this task. We have analysed microglia-derived lysosomal proteases for their ability to process MBP in vitro. In lysosomes derived from primary murine microglia, CatD, CatS, AEP and CatG were involved in the processing of MBP. Interestingly, when microglia were treated with interferon-c to mimic a T helper type 1-biased cytokine milieu in MS, CatG was drastically down-regulated, in contrast to CatS, CatB, CatL, CatD or AEP. This resulted in significantly increased stability of MBP and a selective lack of CatG-derived proteolytic fragments; however, it did not affect the gross pattern of MBP processing. Inhibition of serine proteases eliminated the processing differences between lysosomal extracts from resting microglia compared to interferon-stimulated microglia. Thus, the cytokine environment modulates lysosomal proteases in microglia by a selective down-regulation of CatG, leading to decreased MBP-processing by microglia-derived lysosomal proteases in vitro.
Cathepsin E (CatE) and D (CatD) are the major aspartic proteinases in the endolysosomal pathway. They have similar specificity and therefore it is difficult to distinguish between them, as known substrates are not exclusively specific for one or the other. In this paper we present a substrate‐based assay, which is highly relevant for immunological investigations because it detects both CatE and CatD in antigen‐processing organelles. Therefore it could be used to study the involvement of these proteinases in protein degradation and the processing of invariant chain. An assay combining a new monospecific CatE antibody and the substrate, MOCAc‐Gly‐Lys‐Pro‐Ile‐Leu‐Phe‐Phe‐Arg‐Leu‐Lys(Dnp)‐d‐Arg‐NH2[where MOCAc is (7‐methoxycoumarin‐4‐yl)acetyl and Dnp is dinitrophenyl], is presented. This substrate is digested by both proteinases and therefore can be used to detect total aspartic proteinase activity in biological samples. After depletion of CatE by immunoprecipitation, the remaining activity is due to CatD, and the decrease in activity can be assigned to CatE. The activity of CatE and CatD in cytosolic, endosomal and lysosomal fractions of B cells, dendritic cells and human keratinocytes was determined. The data clearly indicate that CatE activity is mainly located in endosomal compartments, and that of CatD in lysosomal compartments. Hence this assay can also be used to characterize subcellular fractions using CatE as an endosomal marker, whereas CatD is a well‐known lysosomal marker. The highest total aspartic proteinase activity was detected in dendritic cells, and the lowest in B cells. The assay presented exhibits a lower detection limit than common antibody‐based methods without lacking the specificity.
Cathepsin D (CatD) is a member of the mammalian aspartic protease family and is involved in cellular protein degradation and in several pathological processes. A sensitive and specific assay for the determination of CatD activity in biological samples was developed. The peptide amide substrates Amca-EDKPILF downward arrowFRLGK(biotin)-CONH2 (I), Amca-EEKPIC(Acm)F downward arrowFRLGK(biotin)-CONH2 (II) and Amca-EEKPISF downward arrowFRLGK(biotin)-CONH2 (III) contain a CatD cleavage site (F downward arrowF) flanked by a N-terminal Amca-fluorophore (7-amino-4-methylcoumarin-3-acetic acid) and a C-terminal biotin moiety. Substrates II and III proved to be specific substrates containing only one cleavage site for CatD. After cleavage of the Phe-Phe bond by CatD all biotin conjugated peptides were removed with streptavidin-coated magnetic beads. The remaining fluorescent peptides in solution represent the amount of digested substrate. The versatility of this CatD digest and pull down assay was demonstrated by measuring the activity of CatD in different subcellular fractions of human EBV-transformed B cells and human monocytes. The described method based on the designed CatD substrates represents a valuable tool for routine assays.
In routine clinical diagnostics, peptide biomarkers are most commonly quantified using immunological techniques but these methods often lack sensitivity and/or specificity. Hence, quantitative mass spectrometry detection is desirable as an alternative diagnostic tool. To date, quantitative mass spectrometry is mostly based on ESI‐MS coupled to LC, requiring highly sophisticated instrumentation and knowledge and is time consuming and expensive. In contrast, MALDI‐TOF‐MS is a very simple, sensitive and rapid method for the detection of peptide biomarkers. However, the infeasibility of absolute quantification has been a tremendous handicap to the use of MS in stable clinical diagnostics. Here, we describe the development of a technical platform based on ClinProt particles and heavy‐isotope internal peptide standards for the fast and reliable preparation of samples. This combines the advantages of MALDI‐TOF as a read‐out system with absolute quantitation of peptide biomarkers. As a proof‐of‐concept, this platform was successfully employed for the absolute determination of the concentration of the highly abundant serum peptide des‐Ala‐Fibrinopeptide A in 45 serum samples from healthy donors. Such technology essentially contributes to the development of a stable MALDI‐TOF‐MS‐based clinical assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.