Abstract:A quantum photonic circuit with the ability to produce continuous variable quantum vortex states is proposed. This device produces two single-mode squeezed states which go through a Mach-Zehnder interferometer where photons are subtracted by means of weakly coupled directional couplers towards ancillary waveguides. The detection of a number of photons in these modes heralds the production of a quantum vortex. Likewise, a measurement system of the order and handedness of quantum vortices is introduced and the performance of both devices is analyzed in a realistic scenario by means of the Wigner function. These devices open the possibility of using the quantum vortices as carriers of quantum information.
Single photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is prevented. We propose three different systems for autocompensating such random perturbations and imperfections when a measurement-device-independent protocol is used. These systems correspond to different optical fibers intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states measurement devices located at Charlie system and present simulations that confirm the importance of autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which compensates the reduction of the bit rate due to losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.