How we attend to objects and their features that cannot be separated by location is not understood. We presented two temporally and spatially overlapping streams of objects, faces versus houses, and used magnetoencephalography and functional magnetic resonance imaging to separate neuronal responses to attended and unattended objects. Attention to faces versus houses enhanced the sensory responses in the fusiform face area (FFA) and parahippocampal place area (PPA), respectively. The increases in sensory responses were accompanied by induced gamma synchrony between the inferior frontal junction, IFJ, and either FFA or PPA, depending on which object was attended. The IFJ appeared to be the driver of the synchrony, as gamma phases were advanced by 20 ms in IFJ compared to FFA or PPA. Thus, the IFJ may direct the flow of visual processing during object-based attention, at least in part through coupled oscillations with specialized areas such as FFA and PPA.
We examined the allocation of attention during the preparation of sequences of manual pointing movements in a dual task paradigm. As the primary task, the participants had to perform a sequence of two or three reaching movements to targets arranged on a clock face. The secondary task was a 2AFC discrimination task in which a discrimination target (digital 'E' or '3') was presented among distractors either at one of the movement goals or at any other position. The data show that discrimination performance is superior at the location of all movement targets while it is close to chance at the positions that were not relevant for the movement. Moreover, our findings demonstrate that all movement-relevant locations are selected in parallel rather than serially in time, and that selection involves spatially distinct, non-contiguous foci of visual attention. We conclude that during movement preparation--well before the actual execution of the hand movement--attention is allocated in parallel to each of the individual movement targets.
We examined the allocation of attention during the preparation of sequences of saccades in a dual task paradigm. As a primary task, participants performed a sequence of two or three saccades to targets arranged on a circular array. The secondary task was a two-alternative discrimination in which a critical discrimination stimulus (digital "E" or "3") was presented among distractors either at one of the saccade goals or at any other position. The findings show that discrimination performance is enhanced at all the saccade target locations of the planned sequence, while it is close to chance level at the positions that are not relevant for the saccade sequence. An analysis of the discrimination performance at the intermediate locations indicates that saccade target selection involves spatially distinct, non-contiguous foci of attention. Further, our findings demonstrate that the movement-relevant locations are selected in parallel rather than serially in time. We conclude that during the preparation of a saccade sequence--well before the actual execution of the eye movement--attention is allocated in parallel to each of the individual movement targets.
It is well established that during the preparation and execution of goal-directed movements, perceptual processing is biased towards the goal. Most of the previous work on the relation between action and attention has focused on rather simple movements, such as single saccades or manual reaches towards a single target. Here we review recent behavioural and neurophysiological studies on manual actions that require to consider more than a single spatial location in the planning of the response, such as movement sequences, grasping, and movements around obstacles. The studies provide compelling evidence that the preparation of these actions establishes multiple foci of attention which reflect the spatial-temporal requirements of the future action. The findings help clarify how perceptual processing is bound by action preparation and also offer new perspectives for motor control research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.