SUMMARYThe cranial lateral line canal system of teleost fishes is morphologically diverse and is characterized by four patterns. One of these, widened lateral line canals, has evolved convergently in a wide range of teleosts, including the Lake Malawi peacock cichlids (Aulonocara), and has been attributed to its role in prey detection. The ability to study Aulonocara in the laboratory provides an opportunity to test the hypothesis that their reported ability to feed on invertebrate prey living in sandy substrates in their natural habitat is the result of lateral-line-mediated prey detection. The goal of this study was to determine whether Aulonocara stuartgranti could detect hydrodynamic stimuli generated by tethered brine shrimp (visualized using digital particle image velocimetry) under light and dark conditions, with and without treatment with cobalt chloride, which is known to temporarily inactivate the lateral line system. Fish were presented with six pairs of tethered live and dead adult brine shrimp and feeding behavior was recorded with HD digital video. Results demonstrate that A. stuartgranti: (1) uses the same swimming/feeding strategy as they do in the field; (2) detects and consumes invertebrate prey in the dark using its lateral line system; (3) alters prey detection behavior when feeding on the same prey under light and dark conditions, suggesting the involvement of multiple sensory modalities; and (4) after treatment with cobalt chloride, exhibits a reduction in their ability to detect hydrodynamic stimuli produced by prey, especially in the dark, thus demonstrating the role of the lateral line system in prey detection.
The lateral-line system of the common bully, Gobiomorphus cotidianus, is unusual in that it possesses an extensive array of superficial neuromasts. Fish were trained to orientate to a small vibrating bead (50 Hz). By manipulating the amplitude of vibration to determine the threshold level for the behaviour, the hydrodynamic detection capabilities of the common bully were characterised in both still- and flowing-water. In still water, the common bully attained a detection threshold (calculated as the amplitude of water particle displacement at the snout) of 3.3 × 10−5 cm at 50 Hz. Successive elevations in the background flow caused a 10-fold decrease in detection sensitivity. At a background flow of 4.5 cm s–1 the detection threshold increased to 3 × 10−4 cm. These findings demonstrate that a lateral-line system that lacks sub-surface canal neuromasts is most sensitive in still-water conditions (low-noise). However, this system is compromised under flowing-water conditions such that sensitivity is reduced at current velocities >1.5 cm s–1.
The dwarf scorpionfish Scorpaena papillosa detected the hydrodynamic signals produced by prey with the mechanosensory lateral line. This species displayed a pause and move search pattern that is consistent with a saltatory search. The pause phase of the search cycle was probably used to detect prey because pauses often ended early in order to initiate an approach at prey and prey were detected throughout the search space. The move phase of the search cycle repositioned the fish so that it moved approximately a third of the reactive distance. Move distance was found to be the most important factor in gaining novel search space. Turning was shown to be relatively unimportant in gaining novel search space with a high frequency of low turn angles made by the fish. The dwarf scorpionfish, however, exhibited a spiralling or looping pattern over a search path exhibiting a turn bias towards either the left or right. The dwarf scorpionfish adopted a search behaviour that is consistent with a saltatory search and efficient for lateral line predation.
The mechanosensory lateral line is found in all aquatic fish and amphibians. It provides a highly sensitive and versatile hydrodynamic sense that is used in a wide range of behavior. Hydrodynamic stimuli of biological interest originate from both abiotic and biotic sources, and include water currents, turbulence and the water disturbances caused by other animals, such as prey, predators and conspecifics. However, the detection of biologically important stimuli often has to occur against a background of noise generated by water movement, or movement of the fish itself. As such, separating signal and noise is "of the essence" in understanding the behavior and physiology of mechanoreception. Here we discuss general issues of signal and noise in the lateral-line system and the behavioral and physiological strategies that are used by fish to enhance signal detection in a noisy environment. In order for signal and noise to be separated, they need to differ, and we will consider those differences under the headings of: frequency and temporal pattern; intensity discrimination; spatial separation; and mechanisms for the reduction of self-generated noise. We systematically cover the issues of signal and noise in lateral-line systems, but emphasize recent work on self-generated noise, and signal and noise issues related to prey search strategies and collision avoidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.