The GALAH survey is a large high-resolution spectroscopic survey using the newly commissioned HERMES spectrograph on the Anglo-Australian Telescope. The HER-MES spectrograph provides high-resolution (R ∼28,000) spectra in four passbands for 392 stars simultaneously over a 2 degree field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ∼14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
We present ultraviolet, optical and near-infrared observations of the interacting transient SN 2009ip, covering the period from the start of the outburst in 2012 October until the end of the 2012 observing season. The transient reached a peak magnitude of M V = −17.7 mag, with a total integrated luminosity of 1.9 × 10 49 erg over the period of 2012 August-December. The light curve fades rapidly, dropping by 4.5 mag from the V-band peak in 100 d. The optical and near-infrared spectra are dominated by narrow emission lines with broad electron scattering wings, signalling a dense circumstellar environment, together with multiple components of broad emission and absorption in H and He at velocities in the range 0.5-1.2 × 10 4 km s −1 . We see no evidence for nucleosynthesized material in SN 2009ip, even in late-time pseudonebular spectra. We set a limit of <0.02 M on the mass of any possible synthesized 56 Ni from the late-time light curve. A simple model for the narrow Balmer lines is presented and used to derive number densities for the circumstellar medium in the range ∼10 9 -10 10 cm −3 . Our * Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, as part of programme 188.D-3003 (PESSTO).
No abstract
The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.
High-resolution optical spectroscopy is a powerful tool to characterise exoplanetary atmospheres from the ground. The sodium D lines, with their large cross sections, are especially suited to studying the upper layers of atmospheres in this context. We report on the results from Hot Exoplanet Atmosphere Resolved with Transit Spectroscopy survey (HEARTS), a spectroscopic survey of exoplanet atmospheres, performing a comparative study of hot gas giants to determine the effects of stellar irradiation. In this second installation of the series, we highlight the detection of neutral sodium on the ultra-hot giant WASP-76b. We observed three transits of the planet using the High-Accuracy Radial-velocity Planet Searcher (HARPS) high-resolution spectrograph at the European Southern Observatory (ESO) 3.6 m telescope and collected 175 spectra of WASP-76. We repeatedly detect the absorption signature of neutral sodium in the planet atmosphere (0.371 ± 0.034%; 10.75σ in a 0.75 Å passband). The sodium lines have a Gaussian profile with full width at half maximum (FWHM) of 27.6 ± 2.8 km s−1. This is significantly broader than the line spread function of HARPS (2.7 km s−1). We surmise that the observed broadening could trace the super-rotation in the upper atmosphere of this ultra-hot gas giant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.