Abstract. We develop a pseudo-differential Weyl calculus on nilpotent Lie groups which allows one to deal with magnetic perturbations of right invariant vector fields. For this purpose we investigate an infinite-dimensional Lie group constructed as the semidirect product of a nilpotent Lie grup and an appropriate function space thereon. We single out an appropriate coadjoint orbit in the semidirect product and construct our pseudo-differential calculus as a Weyl quantization of that orbit.
Geometric realizations for the restrictions of GNS representations to unitary groups of C * -algebras are constructed. These geometric realizations use an appropriate concept of reproducing kernels on vector bundles. To build such realizations in spaces of holomorphic sections, a class of complex coadjoint orbits of the corresponding real Banach-Lie groups is described and some homogeneous holomorphic Hermitian vector bundles that are naturally associated with the coadjoint orbits are constructed.
We investigate some basic questions concerning the relationship between the restricted Grassmannian and the theory of Banach Lie-Poisson spaces. By using universal central extensions of Lie algebras, we find that the restricted Grassmannian is symplectomorphic to symplectic leaves in certain Banach LiePoisson spaces, and the underlying Banach space can be chosen to be even a Hilbert space. Smoothness of numerous adjoint and coadjoint orbits of the restricted unitary group is also established. Several pathological properties of the restricted algebra are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.