This paper describes a fiber-optic system which is able to detect ultrasound in structures. The aim of the sensing system is to monitor structures, in particular aircraft structures, by detecting ultrasonic Lamb waves. This type of monitoring technique has recently become a key topic in structural health monitoring. Most common approaches use piezoceramic devices to launch and receive the ultrasound. A new way of fiber-optic detection of Lamb waves is based on fiber Bragg grating sensors. In addition to the well known advantages of fiber-optic sensors, this new interrogation scheme allows the use of Bragg gratings for both high-resolution strain and high-speed ultrasound detection. The focus of the paper is on the ultrasonic part of the system. The theoretical approach and the implementation into a laboratory set-up are elaborated. Experiments have been carried out to calibrate the system and first results on simple structures show the feasibility of the system for sensing ultrasonic Lamb waves.
The aim of this study is to present the results of testing a damage detection and damage localization system based on fiber Bragg grating sensors. The objective of the system is to detect and locate damage in structures such as those found in aerospace applications. The damage identification system involves Bragg gratings for sensing ultrasound by detecting the linear strain component produced by Lamb waves. A tuneable laser is used for the interrogation of the Bragg gratings to achieve high sensitivity detection of ultrasound. The interaction of Lamb waves with damage, e.g., the reflection of the waves at defects, allows the detection of damage in structures by monitoring the Lamb wave propagation characteristics. As the reflected waves produce additional components within the original signal, most of the information about the damage can be found in the differential signal of the reference and the damage signal. Making use of the directional properties of the Bragg grating the direction of the reflected acoustic waves can be determined by mounting three of the gratings in a rosette configuration. Two suitably spaced rosettes are used to locate the source of the reflection, i.e., the damage, by taking the intersection of the directions given by each rosette. A genetic algorithm (GA) can be used to calculate that intersection and to account for any ambiguities from the Lamb wave measurements. The performance of the GA has been studied and optimized with respect to the localization task. Initial experiments are carried out on an aluminum structure, where holes were drilled to simulate the presence of damage. The results show very good agreement between the calculated and actual positions of the damage.
Structural health monitoring has become a respected and established discipline in engineering. Health monitoring involves the development of autonomous systems for continuous monitoring, inspection and damage detection of structures with minimum involvement of labour. The ultimate goal of structural health monitoring is to increase reliability, improve safety, enable light-weight design and reduce maintenance costs for all kinds of structures. The identification of structural damage is therefore a key issue in structural health monitoring. The scope of this paper is to present the results of testing a system for the identification of structural damage based on fibre Bragg grating sensors. The basic idea is to use fibre Bragg gratings as acoustic receivers of ultrasonic Lamb waves. The layout of such a damage identification system is introduced and its theoretical limits are studied numerically and experimentally. The set-up for damage identification experiments is described and the results of initial experiments introducing damage detection based on the analysis of Lamb wave signals are presented. The results for the Bragg grating sensors are then compared to the results of established technology for Lamb wave detection using piezoceramic transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.