Lithography-based ceramics manufacturing (LCM) processes enable the sophisticated 3 dimensional (3D) shaping of ceramics by additive manufacturing (AM). The build-up occurs, like many other AM processes, layer by layer, and is initiated by light. The built-in digital mirror device (DMD) enables the specific exposure of desired pixels for every layer, giving as a consequence a first estimation of the printing resolution in the x and y axes. In this work, a commercial zirconia slurry and the CeraFab 7500, both from Lithoz GmbH (Vienna, Austria), were used to investigate the potential of reaching this resolution. The results showed that the precision of a part is strongly dependent on the applied exposure energy. Higher exposure energies resulted in oversized dimensions of a part, whereas too low energy was not able to guarantee the formation of a stable part. Furthermore, the investigation of the layer thickness showed that the applied exposure energy (mJ/cm2) was acting in a volume, and the impact is visible in x, y, and z dimensions. The lowest applied exposure energy was 83 mJ/cm2 and showed the most accurate results for a layer thickness of 25 μm. With this energy, holes and gaps smaller than 500 μm could be printed; however, the measurements differed significantly from the dimensions defined in the design. Holes and gaps larger than 500 μm showed deviations smaller than 50 μm from the design and could be printed reliably. The thinnest printable gaps were between 100 and 200 μm. Concerning the wall thickness, the experiments were conducted to a height of 1 cm. Taking into account the stability and deformation of the walls as well, the best results after sintering were achieved with thicknesses of 200–300 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.