Virtual testbeds model them by seamlessly integrating physical, simulated, and emulated sensor nodes and radios in real time
Current surveys and forecast predict that the num ber of wireless devices is going to increase tremendously. These wireless devices can be computers of all kinds, notebooks, netbooks, Smartphones and sensor nodes that evolve into real world scenarios forming a "Real-World-Internet" in the future.In our work we focus on the Future Internet with small battery driven devices forming the "Internet of Things". In recent networking research, testbeds gain more and more attention, especially in the context of Future Internet and wireless sensor networks (WSNs). This development stems from the fact that simulations and even emulations are not considered sufficient for the deployment of new technologies as they often lack realism.Experimental research on testbeds is a promising alternative that can help to close the gap.The deployment of testbeds is challenging and user and operator requirements need to be considered carefully. Therefore, the goal is to design an architecture that allows operators of WSN testbeds to offer numerous users access to their testbeds in a standardized flexible way that matches these requirements.In this paper we first identify some of the requirements, then introduce the architecture and general concepts of our WISEBED approach and show how this architecture meets the requirements of both groups. We give an overview of existing WISEBED compatible WSN testbeds that can be used for experimentation today. Main focus in this paper compared to previous work is to address the perspective of both users and operators on how to experiment or respectively operate a WSN testbed based on WISEBED technology.
There is an increasing trend to integrate sensor networks into the Internet, eventually resulting in an Internet of Things. Recent efforts of porting IPv6 to sensor networks turn sensor nodes into equitable Internet peers and RESTful Web Services on sensor nodes allow a distribution of the application logic among sensor nodes and more powerful Internet nodes. The touching point between a sensor network and the Internet is the gateway which translates between the link-layer protocols used in the Internet (Ethernet, Wi-Fi) and sensor networks (IEEE 802.15.4). So far, the functionality of those gateways was fixed and simple. We propose to turn these gateways into smart gateways by enabling them to execute application code. As only the gateway has full knowledge of and control over both the sensor network and the Internet, smart gateways can act as performance-enhancing proxies and intelligent caches to preserve the limited resources of the sensor network. Also, the smart gateway can perform application-specific protocol conversion between highly optimized but non-standard protocols in the sensor network and standardized, but less efficient protocols in the Internet. In this paper we present the design of a middleware for smart gateways that allows the execution of application code on the gateway by offering simplified interfaces to the sensor network and the Internet. We also report preliminary performance results for key functions of the middleware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.