The Local Analysis and Prediction System combines numerous data sources into a set of analyses and forecasts on a 10-km grid with high temporal resolution. To arrive at an analysis of cloud cover, several input analyses are combined with surface aviation observations and pilot reports of cloud layers. These input analyses are a skin temperature analysis (used to solve for cloud layer heights and coverage) derived from Geostationary Operational Environmental Satellite IR 11.24-mm data, other visible and multispectral imagery, a three-dimensional temperature analysis, and a three-dimensional radar reflectivity analysis derived from full volumetric radar data. Use of a model first guess for clouds is currently being phased in. The goal is to combine the data sources to take advantage of their strengths, thereby automating the synthesis similar to that of a human forecaster.The design of the analysis procedures and output displays focuses on forecaster utility. A number of derived fields are calculated including cloud type, liquid water content, ice content, and icing severity, as well as precipitation type, concentration, and accumulation. Results from validating the cloud fields against independent data obtained during the Winter Icing and Storms Project are presented.Forecasters can now make use of these analyses in a variety of situations, such as depicting sky cover and radiation characteristics over a region, three-dimensionally delineating visibility and icing conditions for aviation, depicting precipitation type, rain and snow accumulation, etc.
The main purpose of the present study is to assess the value of synthetic satellite imagery as a tool for model evaluation performance in addition to more traditional approaches. For this purpose, synthetic GOES-10 imagery at 10.7 μm was produced using output from the Advanced Research Weather Research and Forecasting (ARW-WRF) numerical model. Use of synthetic imagery is a unique method to indirectly evaluate the performance of various microphysical schemes available within the ARW-WRF. In the present study, a simulation of an atmospheric river event that occurred on 30 December 2005 was used. The simulations were performed using the ARW-WRF numerical model with five different microphysical schemes [Lin, WRF single-moment 6 class (WSM6), Thompson, Schultz, and double-moment Morrison]. Synthetic imagery was created and scenes from the simulations were statistically compared with observations from the 10.7-μm band of the GOES-10 imager using a histogram-based technique. The results suggest that synthetic satellite imagery is useful in model performance evaluations as a complementary metric to those used traditionally. For example, accumulated precipitation analyses and other commonly used fields in model evaluations suggested a good agreement among solutions from various microphysical schemes, while the synthetic imagery analysis pointed toward notable differences in simulations of clouds among the microphysical schemes.
Meteorological forcing data are necessary to drive many of the spatial models used to simulate atmospheric, biological, and hydrological processes. Unfortunately, many domains lack sufficient meteorological data and available point observations are not always suitable or reliable for landscape or regional applications. NOAA's Local Analysis and Prediction System (LAPS) is a meteorological assimilation tool that employs available observations (meteorological networks, radar, satellite, soundings, and aircraft) to generate a spatially distributed, three-dimensional representation of atmospheric features and processes. As with any diagnostic representation, it is important to ascertain how LAPS outputs deviate from a variety of independent observations. A number of surface observations exist that are not used in the LAPS system, and they were employed to assess LAPS surface state variable and precipitation analysis performance during two consecutive years (1 September 2001-31 August 2003. LAPS assimilations accurately depicted temperature and relative humidity values. The ability of LAPS to represent wind speed was satisfactory overall, but accuracy declined with increasing elevation. Last, precipitation estimates performed by LAPS were irregular and reflected inherent difficulties in measuring and estimating precipitation.
The accurate and timely depiction of the state of the atmosphere on multiple scales is critical to enhance forecaster situational awareness and to initialize very short-range numerical forecasts in support of nowcasting activities. The Local Analysis and Prediction System (LAPS) of the Earth System Research Laboratory (ESRL)/Global Systems Division (GSD) is a numerical data assimilation and forecast system designed to serve such very finescale applications. LAPS is used operationally by more than 20 national and international agencies, including the NWS, where it has been operational in the Advanced Weather Interactive Processing System (AWIPS) since 1995. Using computationally efficient and scientifically advanced methods such as a multigrid technique that adds observational information on progressively finer scales in successive iterations, GSD recently introduced a new, variational version of LAPS (vLAPS). Surface and 3D analyses generated by vLAPS were tested in the Hazardous Weather Testbed (HWT) to gauge their utility in both situational awareness and nowcasting applications. On a number of occasions, forecasters found that the vLAPS analyses and ensuing very short-range forecasts provided useful guidance for the development of severe weather events, including tornadic storms, while in some other cases the guidance was less sufficient.
The Local Analysis and Prediction System (LAPS) analyzes three-dimensional moisture as one component of its system. This paper describes the positive impact that simple 8-bit, remapped, routinely available imagery have on the LAPS moisture analysis above 500 hPa. A variational method adjusts the LAPS moisture analysis by minimizing differences between forward model-computed radiances and radiances from Advanced Weather Interactive Processing system (AWIPS) image-grade data from Geostationary Operational Environmental Satellite (GOES-8). The three infrared (IR) channels used in the analysis will be routinely available to AWIPS workstations every 15 min. This technique improves LAPS upper-level dewpoint, reducing dewpoint temperature bias and root-mean-square (RMS) error on the order of 0.5 and 1.5 K respectively as compared to Denver Radiosonde Observation (RAOB) data. Furthermore, it strongly exemplifies the objective analysis benefit of image-grade data, in addition to its well-known subjective utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.