Alzheimer's disease and related dementias lack effective treatment or cures and are major public health challenges. Risk for Alzheimer's disease and related dementias is partially attributable to environmental factors. The heavy metals lead, cadmium, and manganese are widespread and persistent in our environments. Once persons are exposed to these metals, they are adept at entering cells and reaching the brain. Lead and cadmium are associated with numerous health outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical Alzheimer's disease pathologies. Adult human epidemiologic studies have consistently shown lead, cadmium, and manganese are associated with impaired cognitive function and cognitive decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on Alzheimer's disease specifically though two studies have reported a link between cadmium and Alzheimer's disease mortality. More longitudinal epidemiologic studies with highquality time course exposure data and incident cases of Alzheimer's disease and related dementias are warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the widespread and global exposure to lead, cadmium, and manganese, even small increases in the risks of Alzheimer's disease and related dementias would have a major population impact on the burden on disease. This article reviews the experimental and epidemiologic literature of the associations between lead, cadmium, and manganese on Alzheimer's disease and related dementias and makes recommendations of critical areas of future investment.
Uncoupling protein 1 (UCP1) executes thermogenesis in brown adipose tissue, which is a major focus of human obesity research. Although the UCP1-knockout (UCP1 KO) mouse represents the most frequently applied animal model to judge the anti-obesity effects of UCP1, the assessment is confounded by unknown anti-obesity factors causing paradoxical obesity resistance below thermoneutral temperatures. Here we identify the enigmatic factor as endogenous FGF21, which is primarily mediating obesity resistance. The generation of UCP1/FGF21 double-knockout mice (dKO) fully reverses obesity resistance. Within mild differences in energy metabolism, urine metabolomics uncover increased secretion of acylcarnitines in UCP1 KOs, suggesting metabolic reprogramming. Strikingly, transcriptomics of metabolically important organs reveal enhanced lipid and oxidative metabolism in specifically white adipose tissue that is fully reversed in dKO mice. Collectively, this study characterizes the effects of endogenous FGF21 that acts as master regulator to protect from diet-induced obesity in the absence of UCP1.
Human CD4+ T cells are essential mediators of immune responses. By altering the mitochondrial and metabolic states, we defined metabolic requirements of human CD4+ T cells for in vitro activation, expansion, and effector function. T-cell activation and proliferation were reduced by inhibiting oxidative phosphorylation, whereas early cytokine production was maintained by either OXPHOS or glycolytic activity. Glucose deprivation in the presence of mild mitochondrial stress markedly reduced all three T-cell functions, contrasting the exposure to resveratrol, an antioxidant and sirtuin-1 activator, which specifically inhibited cytokine production and T-cell proliferation, but not T-cell activation. Conditions that inhibited T-cell activation were associated with the down-regulation of 2′,5′-oligoadenylate synthetase genes via interferon response pathways. Our findings indicate that T-cell function is grossly impaired by stressors combined with nutrient deprivation, suggesting that correcting nutrient availability, metabolic stress, and/or the function of T cells in these conditions will improve the efficacy of T-cell–based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.