Sufficient zinc (Zn) supply is a key element of successful animal husbandry. Proper use of dietary Zn sources, however, demands knowledge of Zn requirement and bioavailability, reflecting practical feeding systems. In this study, an experimental model is presented where 48 fully weaned and individually housed piglets received a fine differentiated alimentary Zn supply. The basal diet consisted mainly of corn and soybean meal (native Zn: 28.1 mg/kg feed) and was fortified with Zn from Zn sulphate at eight levels (0, 5, 10, 15, 20, 30, 40 and 60 mg Zn/kg). All animals were pretreated uniformly with the highest Zn supply (88 mg total Zn/kg feed) for two weeks (feeding ad libitum). Subsequently, animals were switched to the eight experimental diets (six animals per group, restricted feeding at 450 g/d). This period was limited to 8 d in order to avoid clinical Zn-deficiency symptoms. Measurements included amounts of apparently digested Zn, final levels of plasma Zn, plasma Zn-binding capacity, plasma alkaline phosphatase activity, femur Zn, liver Zn as well as hepatic metallothionein (Mt) 1a and Mt2b gene expression and hepatic Mt protein abundance. Clinical signs of Zn deficiency were completely absent through the entire study. All the analysed parameters except for Mt protein abundance responded sensitively to graduations in dietary Zn contents and indicated the presence of Zn deficiency at lower dietary Zn additions. Amounts of apparently digested Zn, liver Zn as well as hepatic Mt1a and Mt2b gene expression indicated transition from deficient to sufficient Zn supply between 47.5 and 58.2 mg of total Zn per kg of diet as assessed by broken-line response techniques. Analysed blood and bone parameters responded linearly to graduations in dietary Zn supply even within sufficient Zn supply levels. Taken together, the results indicate the suitability of our experimental model to determine Zn requirement in piglets and hence to also assess bioavailability of dietary Zn sources. The latter may be done by comparing the slope of the amounts of apparently digested Zn as well as by determining the response of blood and bone parameters to graduations in dietary Zn at insufficient Zn supply.
We present a newly developed electromechanical sensor with automated calibration for strain-gauge plethysmography (filtrass) and compare it to a conventional mercury-in-Silastic strain-gauge plethysmograph (MSG). Fluid filtration capacity (K(f)) and isovolumetric venous pressure (Piv) of the limb were assessed noninvasively with both devices in 29 healthy volunteers. We found significantly higher K(f) and Piv values with MSG [4.6 +/- 2.0 x 10(-3) ml. min(-1). mmHg(-1). 100 ml tissue(-1) (K(f) units; K(f)U) and 21.2 +/- 8.1 mmHg for Pvi], than with filtrass, giving values of 3.1 +/- 0.8 K(f)U and 15.1 +/- 7.1 mmHg. Because K(f) and Piv are profoundly influenced by the calibration, we investigated the quality of the calibration signal and its impact on the obtained values. We could show that the reproducibility of repeated calibrations was higher with filtrass (58% lower mean +/- SD). The data were grouped according to the quality of calibration, and we found no significant difference in K(f) and Piv between filtrass (3.0 +/- 0.7 K(f)U and 15.9 +/- 6.9 mmHg, respectively) and MSG with good calibration signal (3.3 +/- 0. 8 K(f)U and 18.6 +/- 7.1 mmHg, respectively; no significant difference). However, we obtained significantly higher MSG values (5. 6 +/- 2.0 K(f)U and 23.1 +/- 8.4 mmHg, respectively; P < 0.001) in the group with a bad calibration signal. We suggest that the filtrass sensor, which performs an automatic, standardized calibration procedure and shows a linear signal response to stretch, gives highly reproducible and reliable results and thus is more suitable for routine application.
Trace elements are essential dietary components for livestock species. However, they also exhibit a strong toxic potential. Therefore, their fluxes through the animal organism are tightly regulated by a complex molecular machinery that controls the rate of absorption from the gut lumen as well as the amount of excretion via faeces, urine and products (e.g., milk) in order to maintain an internal equilibrium. When supplemented in doses above the gross requirement trace elements accumulate in urine and faeces and, hence, manure. Thereby, trace element emissions represent a potential threat to the environment. This fact is of particular importance in regard to the widely distributed feeding practice of pharmacological zinc and copper doses for the purpose of performance enhancement. Adverse environmental effects have been described, like impairment of plant production, accumulation in edible animal products and the water supply chain as well as the correlation between increased trace element loads and antimicrobial resistance. In the light of discussions about reducing the allowed upper limits for trace element loads in feed and manure from livestock production in the European Union excessive dosing needs to be critically reconsidered. Moreover, the precision in trace element feeding has to be increased in order to avoid unnecessary supplementation and, thereby, heavy metal emissions from livestock production.
Most countries in Western Europe are currently free of rabies in terrestrial mammals. Nevertheless, rabies remains a residual risk to public health due to the natural circulation of bat-specific viruses, such as European bat lyssaviruses (EBLVs). European bat lyssavirus types 1 and 2 (EBLV-1 and EBLV-2) are widely distributed throughout Europe, but little is known of their true prevalence and epidemiology. We report that only three out of 837 brains taken from bats submitted to the Swiss Rabies Centre between 1976 and 2009 were found by immunofluorescence (FAT) to be positive for EBLVs. All three positive cases were in Myotis daubentoni, from 1992, 1993 and 2002. In addition to this passive surveillance, we undertook a targeted survey in 2009, aimed at detecting lyssaviruses in live bats in Switzerland. A total of 237 bats of the species M. daubentoni, Myotis myotis, Eptesicus serotinus and Nyctalus noctula were captured at different sites in western Switzerland. Oropharyngeal swabs and blood from each individual were analysed by RT-PCR and rapid fluorescent focus inhibition test (RFFIT), respectively. RNA corresponding to EBLV-2 was detected from oropharyngeal swabs of a single M. daubentoni bat, but no infectious virus was found. Molecular phylogenetic analysis revealed that the corresponding sequence was closely related to the other EBLV-2 sequences identified in previous rabies isolates from Swiss bats (particularly to that found at Geneva in 2002). Three M. daubentoni bats were found to be seropositive by RFFIT. In conclusion, even though the prevalence is low in Switzerland, continuous management and surveillance are required to assess the potential risk to public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.