Purpose This study aimed to investigate, in the setting of neoadjuvant gastric irradiation with integrated boost, whether cone beam computed tomography (CBCT)-based adaptive radiation therapy compared with a defined-filling protocol would be beneficial in terms of feasibility and achieving daily reproducible dose volume indexes of the planning target volume (PTV) and organs at risk (OARs) and workflow. Methods and materials Planning computed tomography (PCT) and 25 CBCT scans of a previously treated patient were used, and neoadjuvant therapy of gastric carcinoma was simulated offline. PTVs and OARs were defined per the TOPGEAR protocol (PTV: 45 Gy/1.8 Gy), and an integrated boost (gross tumor volume [GTV]: 50.4 Gy/2.016 Gy) was added. The patient followed a filling regimen consisting of 12-hour fasting followed by 200 mL of water intake (2 glasses of water) immediately before irradiation. OARs and PTVs were newly contoured on each CBCT. Nonrigid registration of PCT and CBCT scans was performed. Nonadapted plans were recalculated on each CBCT (R-CBCT). Furthermore, an adapted plan was created for the new anatomy (A-CBCT). Dose parameters and comparison of R-CBCT and A-CBCT for the kidneys, liver, and heart were analyzed using a paired t test. Results A total of 200 plans for R-CBCT and A-CBCT were obtained. Mean gastric volumes were 277.32 cm 3 (±54.40 cm 3 ) in CBCT scans and 519.2 cm 3 in PCT. Mean doses to the PTV did not differ meaningfully within the CBCT scans, with an average of 1.54%. The D 95 improved in GTV coverage by 5.26% compared with the R-CBCT plan. Mean heart, liver, and right kidney doses were reduced with the A-CBCT plan by 35.74%, 10.71% and 29.47%, respectively. The R- and A-CBCT comparison for GTV and OARs was significantly different in all cases ( P < .0001). Conclusions Adaptive radiation therapy through deformable registration represents an important tool in neoadjuvant gastric irradiation, encompassing daily variability and organ motion, compared with the defined-filling protocol while improving OAR sparing.
Objective: Intraoperative radiotherapy (IORT) after surgical resection using a low‐kV‐X‐ray source is a proven method used in cancer treatment. However, the shape and size of the targeted surface area are limited to the size of the available applicators. This can lead to nonconformal and therefore suboptimal treatment for many patients. Methods: A system is proposed comprising an X‐ray source with an applicator for surface irradiation mounted on a robotic arm. This is controlled by an algorithm designed for planning the required continuous path, enabling irradiation of any desired shape with a controlled dose distribution. Results: The system is shown to be capable of irradiating areas composed of rectangles on a flat surface with a homogeneity index of less than 7% inside the targeted area. Conclusion: The presented results demonstrate the potential of the proposed setup to eliminate the current limitations, leading to better treatment of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.