Cell-type specific signalling determines cell fate under physiological conditions, but it is increasingly apparent that also in cancer development the impact of any given oncogenic pathway on the individual cancer pathology is dependent on cell-lineage specific molecular traits. For instance in colon and liver cancer canonical Wnt signalling produces increased cytoplasmic and nuclear localised beta-catenin, which correlates with invasion and poor prognosis. In contrast, in melanoma increased cytoplasmic and nuclear beta-catenin is currently emerging as a marker for good prognosis and thus appears to have a different function compared to other cancer types; however this function is unknown. We discovered that in contrast to its function in other cancers, in melanoma, beta-catenin blocks invasion. We demonstrate that this opposing role of nuclear beta-catenin in melanoma is mediated through MITF, a melanoma-specific protein that defines the lineage background of this cancer type. Downstream of beta-catenin MITF not only suppresses the Rho-GTPase regulated cell-morphology of invading melanoma cells, but also interferes with beta-catenin induced expression of the essential collagenase MT1-MMP, thus affecting all aspects of an invasive phenotype. Importantly, overexpression of MITF in invasive colon cancer cells modifies beta-catenin directed signalling and induces a ‘melanoma-phenotype’. In summary, the cell type specific presence of MITF in melanoma affects beta-catenin’s pro-invasive properties otherwise active in colon or liver cancer. Thus our study reveals the general importance of considering cell-type specific signalling for the accurate interpretation of tumour markers and ultimately for the design of rational therapies.
BackgroundThe JAK2 V617F mutation can be found in patients with polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis. Mutation or methylation of other components of JAK/STAT signaling, such as the negative regulators suppressor of cytokine signaling 1 (SOCS1) and SOCS3, may contribute to the pathogenesis of both JAK2 V617F positive and negative myeloproliferative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.