Healthcare stereotype threat (HCST) is defined as “being reduced to group stereotypes within an individual’s healthcare encounter,” leading to experiences of stigma and discrimination. This current study explores how older gay men living with HIV attribute their healthcare experiences to their social identities. Using HCST as a guiding framework, a content and structural coding analysis was conducted on transcripts from 11 interviews of older gay men living with HIV. The majority of HCST experiences were connected to the social identities of sexual orientation, HIV status, and age. Many of the healthcare experiences that participants discussed were related to interactions with healthcare providers and the attitudes of healthcare providers. This study illustrates how participants attributed social identities to healthcare experiences that showed qualities of HCST. These outcomes highlight how marginalized social identities impacted the lifetime healthcare experiences of this group of older gay men living with HIV.
Tendon is predominantly composed of aligned type I collagen, but additional isoforms are known to influence fibril architecture and maturation, which contribute to the tendon’s overall biomechanical performance. The role of the less well-studied collagen isoforms on fibrillogenesis in tissue engineered tendons is currently unknown, and correlating their relative abundance with biomechanical changes in response to cyclic strain is a promising method for characterising optimised bioengineered tendon grafts. In this study, human mesenchymal stem cells (MSCs) were cultured in a fibrin scaffold with 3%, 5% or 10% cyclic strain at 0.5 Hz for 3 weeks, and a comprehensive multimodal analysis comprising qPCR, western blotting, histology, mechanical testing, fluorescent probe CLSM, TEM and label-free second-harmonic imaging was performed. Molecular data indicated complex transcriptional and translational regulation of collagen isoforms I, II, III, V XI, XII and XIV in response to cyclic strain. Isoforms (XII and XIV) associated with embryonic tenogenesis were deposited in the formation of neo-tendons from hMSCs, suggesting that these engineered tendons form through some recapitulation of a developmental pathway. Tendons cultured with 3% strain had the smallest median fibril diameter but highest resistance to stress, whilst at 10% strain tendons had the highest median fibril diameter and the highest rate of stress relaxation. Second harmonic generation exposed distinct structural arrangements of collagen fibres in each strain group. Fluorescent probe images correlated increasing cyclic strain with increased fibril alignment from 40% (static strain) to 61.5% alignment (10% cyclic strain). These results indicate that cyclic strain rates stimulate differential cell responses via complex regulation of collagen isoforms which influence the structural organisation of developing fibril architectures.
Objectives The objective of this study was to use for the first time proton nuclear magnetic resonance spectroscopy (1H NMR) to examine the metabolomic profile of stifle joint synovial fluid from dogs with cranial cruciate ligament rupture with and without meniscal injuries. We hypothesised this would identify biomarkers of meniscal injury. Methods Stifle joint synovial fluid was collected from dogs undergoing stifle joint surgery or arthrocentesis for lameness investigations at three veterinary hospitals in the North-West of England. Samples underwent 1H NMR spectroscopy and metabolite identification. We used multivariate and univariate statistical analysis to identify differences in the metabolomic profile between dogs with cranial cruciate ligament rupture and meniscal injury, cranial cruciate ligament rupture without meniscal injury, and neither cranial cruciate ligament rupture nor meniscal injury, taking into consideration specific clinical variables. Results 154 samples of canine synovial fluid were included in the study. 64 metabolites were annotated to the 1H NMR spectra. Six spectral regions were found to be significantly altered between groups with cranial cruciate ligament rupture with and without meniscal injury, including three attributed to NMR mobile lipids (mobile lipid -CH3 [p=0.016], mobile lipid -n(CH3)3 [p=0.017], mobile unsaturated lipid [p=0.031]). Clinical Significance We identified an increase in NMR mobile lipids in the synovial fluid of dogs with meniscal injury which are of interest as potential biomarkers of meniscal injury, as well as understanding the metabolic processes that occur with meniscal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.