The transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB are required for the expression of many genes involved in the innate immune response. Viral infection, or the binding of double-stranded RNA to Toll-like receptor 3, results in the coordinate activation of IRF3 and NF-kappaB. Activation of IRF3 requires signal-dependent phosphorylation, but little is known about the signaling pathway or kinases involved. Here we report that the noncanonical IkappaB kinase homologs, IkappaB kinase-epsilon (IKKepsilon) and TANK-binding kinase-1 (TBK1), which were previously implicated in NF-kappaB activation, are also essential components of the IRF3 signaling pathway. Thus, IKKepsilon and TBK1 have a pivotal role in coordinating the activation of IRF3 and NF-kappaB in the innate immune response.
The immune system has evolved to respond not only to pathogens, but also to signals released from dying cells. Cell death through necrosis induces inflammation, whereas apoptotic cell death provides an important signal for tolerance induction. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein, released actively following cytokine stimulation as well as passively during cell death; it is the prototypic damage-associated molecular pattern (DAMP) molecule and has been implicated in several inflammatory disorders. HMGB1 can associate with other molecules, including TLR ligands and cytokines, and activates cells through the differential engagement of multiple surface receptors including TLR2, TLR4, and RAGE. RAGE is a multiligand receptor that binds structurally diverse molecules, including not only HMGB1, but also S100 family members and amyloid-β. RAGE activation has been implicated in sterile inflammation as well as in cancer, diabetes, and Alzheimer's disease. While HMGB1 through interactions with TLRs may also be important, this review focuses on the role of the HMGB1-RAGE axis in inflammation and cancer.
Toll–IL-1–resistance (TIR) domain–containing adaptor-inducing IFN-β (TRIF)–related adaptor molecule (TRAM) is the fourth TIR domain–containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-κB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-α/β, regulated on activation, normal T cell expressed and secreted (RANTES), and γ interferon–inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the function of TRAM is restricted to the TLR4 pathway. TRAM interacts with TRIF, MyD88 adaptor–like protein (Mal)/TIRAP, and TLR4 but not with TLR3. These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.