This manuscript focuses on one of the most famous open problems in mathematics, namely the Collatz conjecture. The first part of the paper is devoted to describe the problem, providing a historical introduction to it, as well as giving some intuitive arguments of why is it hard from the mathematical point of view. The second part is dedicated to the visualization of behaviors of the Collatz iteration function and the analysis of the results.
We find sufficient conditions for the unique solution of certain second-order boundary value problems to have a constant sign. To this purpose, we use the expression in terms of a Green’s function of the unique solution for impulsive linear periodic boundary value problems associated with second-order differential equations with a functional dependence, which is a piecewise constant function. Our analysis lies in the study of the sign of the Green’s function.
From fractional order equations to integer order equationsThis document is a preprint of a currently submitted article. There might be significant differences between this manuscript and the future final version (adding, deleting or improving some contents). The authors do strongly recommend to the reader to take this document as a sketch (with proofs) of the most important results of a future final version. In this sense, the authors request the reader to consult the final document, when published in a scientific journal, for a more detailed and corrected version. AbstractThe main goal of this article is to show a new method to solve some Fractional Order Integral Equations (FOIE), more precisely the ones which are linear, have constant coefficients and all the integration orders involved are rational. The method essentially turns a FOIE into an Ordinary Integral Equation (OIE) by applying a suitable fractional integral operator.After discussing the state of the art, we present the idea of our construction in a particular case (Abel integral equation). After that, we propose our method in a general case, showing that it does work when dealing with a family of "additive" operators over a vector space. Later, we show that our construction is always possible when dealing with any FOIE under the above-mentioned hypotheses. Furthermore, it is shown that our construction is "optimal" in the sense that the OIE that we obtain has the least possible order.
In this work, we apply and extend our ideas presented in [4] for solving fractional integral equations with Riemann-Liouville definition. The approach made in [4] turned any linear fractional integral equation with constant coefficients and rational orders into a similar one, but with integer orders. If the right hand side was smooth enough we could differentiate at both sides to arrive to a linear ODE with constant coefficients and some initial conditions, that can be solved via an standard procedure. In this procedure, there were two major obstacles that did not allow to obtain a full result. These were the assumptions over the smoothness of the source term and the assumption about the rationality of the orders. So, one of the main topics of this document is to describe a modification of the procedure presented in [4], when the source term is not smooth enough to differentiate the required amount of times. Furthermore, we will also study the fractional integral equations with non-rational orders by a limit process of fractional integral equations with rational orders. Finally, we will connect the previous material with some fractional differential equations with Caputo derivatives described in [7]. For instance, we will deal with the fractional oscillation equation, the fractional relaxation equation and, specially, its particular case of the Basset problem. We also expose how to compute these solutions for the Riemann-Liouville case.
The aim of this note is to make a brief consideration about the Index Law in fractional differentiation. We are not interested in any particular definition of fractional derivative, and that is why we will not introduce any. We make an exception in the section of examples, but in any case the full document can be understood without it. We show, roughly speaking, that it does not exist any linear operator which is an n-th root of the usual derivative in a very general framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.