Nanoparticles find applications in multiple technological and scientific fields, and laser ablation in liquid (LAL) emerged as a versatile method for providing colloidal solutions of nanomaterials with various composition, by a low cost, simple, self-standing, and "green" procedure. However, the use of high energy and high power laser beams is harmful, especially when coupled with flammable or toxic liquids, and in situ operation is required for starting, monitoring the LAL synthesis, and stopping it at the desired point. Here we describe the hardware and software design and the test results of a system for the production of nanoparticles by laser ablation synthesis in liquid solution (LASiS), which is remotely controllable with a personal computer or a smartphone. In this system, laser energy and solution flux are selectable, and the synthesis status can be monitored and managed at any time off site. Only commercially available components and software are employed, making the whole apparatus easily reproducible in any LAL laboratory. The system has proven its reliability in various conditions, including intercontinental remote control experiments. Overall, this apparatus represents a step forward to improve the safety and to more efficiently exploit the time of people working with LASiS, thus contributing to the increasing demand for off-site real time monitoring of experimental equipment in many scientific and industrial laboratories, due to safety and efficiency requirements.
This paper develops a parametric method for determining the core radius and shell thickness in small silver–silver-oxide core–shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core–shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core–shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver–silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method may be the basis for developing a plasmonic sensor for O2 concentration based on Ag single NP spectroscopy.
Dependence of the localized surface plasmon resonance of noble metal quasispherical nanoparticles on their crystallinity-related morphologies This paper develops a novel method for simultaneously determining the plasma frequency x P and the damping constant c f ree in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for x p (0.5%-1.6%) and for c f ree (3%-8%), which are smaller than those reported in the literature. These small uncertainties in x p and c f ree determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes x p and c f ree determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM). V C 2014 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.