The intent of this study was to determine if the stimulation-induced increase or "potentiation" of dynamic function of mouse extensor digitorum longus muscle (in vitro 25°C) during work cycles is graded to myosin regulatory light-chain (RLC) phosphorylation. To do this, concentric force and muscle work output during sinusoidal length changes were determined before (unpotentiated) and after (potentiated) the application of conditioning stimuli (CS) producing incremental elevations in RLC phosphorylation from rest. Sine wave excursion was from 1.09 to 0.91 of L (o) with a period of 142 ms; stimulating muscles to twitch and generate force during these cycles produced plots of force × displacement termed work loops. Stimulation at 2.5-, 5.0-, and 100-Hz elevated RLC phosphorylation from 0.16±0.02 (rest) to 0.29±0.03, 0.45±0.02 and 0.56±0.02 mol phos per mole RLC, respectively (n= 6-7, P<0.05). These CS potentiated mean concentric force (at all lengths) to 1.14±0.02, 1.26±0.04 and 1.41±0.06 of pre-stimulus, control levels (all n= 5-7, P<0.05) while work was increased to 1.07±0.02, 1.17±0.02 and 1.34±0.03 of controls, respectively. In a No CS condition that did not elevate RLC phosphorylation, neither mean concentric force nor work was altered. Thus, strong correlations between RLC phosphorylation and mean concentric force and work support the hypothesis that this molecular mechanism modulates muscle power output. No length-dependence for concentric force potentiation was observed in any condition, an outcome suggesting that interactions between instantaneous variations in muscle length and shortening velocity during work cycles modulates the potentiation response.
SUMMARYThe purpose of this study was to test the hypothesis that the potentiation of concentric twitch force during work cycles is dependent upon both the speed and direction of length change. Concentric and eccentric forces were elicited by stimulating muscles during the shortening and lengthening phases, respectively, of work cycles. Work cycle frequency was varied in order to vary the speed of muscle shortening and/or lengthening; all forces were measured as the muscle passed though optimal length (L o ). Both concentric and eccentric force were assessed before (unpotentiated control) and after (potentiated) the application of a tetanic conditioning protocol known to potentiate twitch force output. The influence of the conditioning protocol on relative concentric force was speed dependent, with forces increased to 1.19±0.01, 1.25±0.01 and 1.30±0.01 of controls at 1.5, 3.3 and 6.9Hz, respectively (all data N9-10 with P<0.05). In contrast, the conditioning protocol had only a limited effect on eccentric force at these frequencies (range: 1.06±0.01 to 0.96±0.03). The effect of the conditioning protocol on concentric work (force ϫ distance) was also speed dependent, being decreased at 1.5Hz (0.84±0.01) and increased at 3.3 and 6.9Hz (1.05±0.01 and 1.39±0.01, respectively). In contrast, eccentric work was not increased at any frequency (range: 0.88±0.02 to 0.99±0.01). Thus, our results reveal a hysteresis-like influence of activity-dependent potentiation such that concentric force and/or work were increased but eccentric force and/or work were not. These outcomes may have implications for skeletal muscle locomotor function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.