Background/AimsThe development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model.MethodsCirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed.ResultsBiochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells.ConclusionsTaken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved.
Background: The prevalence of allergic diseases is globally increasing. We have previously described that glycomacropeptide (GMP), a bioactive milk peptide, has therapeutic value in experimental models of skin hypersensitivity, anaphylaxis, and asthma, as it prevents an excessive T helper type 2 cell immune response. The aim of this study was to analyze the effect of GMP on key elements directly involved in the development or control of allergy, in order to improve the precise knowledge about its mechanism of action. Methods: Rats were systemically sensitized with ovalbumin and orally treated with GMP. Levels of Lactobacillus, Bifidobacterium, and Bacteroides were analyzed in their feces. Splenocytes were isolated and the production of transforming growth factor (TGF)-β by allergens was measured. Intradermal skin reactions were developed to evaluate in vivo activation of mast cells. Peritoneal mast cells were isolated and activated by the allergen, and histamine secretion was determined. Results: GMP administration increased the amount of intestinal Lactobacillus and Bifidobacterium of allergen-sensitized animals after 3 days of treatment. The increase in Bacteroides was also significant, but only after 17 days of GMP administration. Ten days after treatment cessation, Lactobacillus and Bacteroides were still elevated. GMP intake also elevated the production of TGF-β in the splenocytes of sensitized animals. In addition, treatment with GMP attenuated mast cell activation by the allergen and inhibited histamine secretion, without affecting the number of mast cells. Conclusions: The prebiotic action of GMP on allergy-protective microbiota, an increase in TGF-β production, and a reduction in mast cell response to allergens are novel mechanisms that explain the antiallergic activity of GMP.
Atopic dermatitis (AD) is one of the most common skin diseases, whose incidence is increasing in industrialized countries. The epicutaneous application of a hapten, such as 2,4-dinitrochlorobenzene (DNCB), evokes an experimental murine AD-like reaction. Glycomacropeptide (GMP) is a dairy bioactive peptide derived from hydrolysis of κ-casein by chymosin action. It has anti-inflammatory, prebiotic, and immunomodulatory effects. The present study was aimed to investigate the effect of GMP administration on DNCB-induced AD in rats. The severity of inflammatory process, pruritus, production of cytokines, and total immunoglobulin E (IgE) content were measured, and the histopathological features were analyzed. GMP reduced the intensity of inflammatory process and edema of DNCB-induced dermatitis, with a significant decrease in eosinophils recruitment and mast cells hyperplasia. In addition GMP suppressed the serum levels of total IgE and IL-4, IL-5, and IL-13 expression in AD-lesions. Besides, the levels of IL-10 were significantly increased. Remarkably, GMP administration before AD-induction abolished pruritus in dermatitis-like reactions in the rats. Taken together, these results indicate that GMP has an inhibitory effect on AD by downregulating Th2 dominant immune response, suggesting GMP as a potential effective alternative therapy for the prevention and management of AD.
Our results suggest that administration of GMP may prevent the development of an excessive Th2 response in asthma and effectively ameliorates the progression of the disease.
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.