Endometriosis is one of the most common causes of infertility and chronic pelvic pain and affects 1 in 10 women in the reproductive-age group. Although existence of this disease has been known for over 100 years, our current knowledge of its pathogenesis, the pathophysiology of related infertility, and its spontaneous evolution is limited. Several reasons contribute to our lack of knowledge, the most critical being the difficulty in carrying out objective long-term studies in women. Thus, we and others have developed the baboon as an appropriate nonhuman primate to study the etiology of this disease. We suggested that endometriosis develops in two distinct phases. Phase I is invasive and dependent on ovarian steroids. Phase II, which is the active phase of the disease, is characterized by endogenous estrogen biosynthesis. Following inoculation with menstrual endometrial tissues in two consecutive menstrual cycles, baboons develop lesions that are similar to those seen in humans. Laparoscopy at 1, 4, and 10 months revealed a preponderance of red raised nodules at the first month, while both red lesions and reddish-blue proliferative endometriotic lesions were evident at 4 and 10 months. The presence of glandular tissue and stromal fibroblasts in these lesions was confirmed by histology. Lesions obtained at 1 and 4 months expressed estrogen receptor beta (ERbeta), matrix metalloproteinase-7 (MMP-7), and vascular endothelial growth factor (VEGF) predominantly. However, aromatase expression was only readily evident at 10 months, although some lesions obtained at 4 months expressed low levels of aromatase. Therefore, our preliminary data suggest that endometriosis can be artificially induced in baboons, and the role of exogenous and endogenous estradiol in proliferation, angiogenesis, and immune modulations can now be evaluated in a potentially systemic manner.
Endometriosis, defined as the ectopic presence of endometrial-like cells, is associated with infertility and pelvic pain in women. Whereas pathogenesis and spontaneous evolution of endometriosis are still poorly understood, recurrences after surgical therapy or after medical treatment are common. Spontaneous endometriosis occurs only in women and in nonhuman primates (NHPs). Inbred rhesus monkeys kept in colonies offer an attractive preclinical model to study the inheritance of spontaneous endometriosis. Baboons with spontaneous or induced endometriosis appear to be the best NHP model to study pathogenesis, pathophysiology, spontaneous evolution and new medical treatment options. In baboons, induction of endometriosis after intrapelvic injection of menstrual endometrium leads to biological changes in peritoneal cavity and in endometrium. This induction process may allows the study of cause-effect relationships which may lead to the discovery of new biomarkers for the development of new non-invasive diagnostic tests and drugs that may prevent or treat endometriosis.
Endometriosis is associated with chronic inflammation, including an increased macrophage activity with increased secretion of cytokines, such as tumor necrosis factor (TNF) or TNF superfamily member 2, previously known as TNFalpha. In the present study, we tested the hypothesis that recombinant human TNFRSF1A (r-hTBP1) can inhibit the development of endometriotic lesions in the baboon, an established model for the study of endometriosis. Endometriosis was induced using intrapelvic injection of menstrual endometrium in 20 baboons with a normal pelvis. In the first part of the study, 14 baboons were randomly assigned to subcutaneous treatment with r-hTBP1, placebo, or GnRH antagonist (positive control). In the second part of the study, menstrual endometrium from 6 baboons was randomly incubated with either PBS or r-hTBP1 before intrapelvic seeding. Video laparoscopy was performed 25 days later to document the number, surface area, and estimated volume of endometriotic lesions and adhesions; to calculate the revised American Fertility Society (rAFS) score and stage; and to confirm the histological presence of endometriosis. In the first part, baboons treated with r-hTBP1 or with Antide (Bachem) had a lower endometriosis rAFS score, a lower surface area and estimated volume of peritoneal endometriotic lesions, and a lower histological confirmation rate compared with controls. Because of less adnexal and cul-de-sac adhesions, the number of baboons with endometriosis of stage II, III, or IV was lower among baboons treated with r-hTBP1 or Antide than among controls. In the second part, the surface area of endometriotic lesions was lower, and less severe endometriosis was observed in r-hTBP1-treated baboons. No hypoestrogenic effects were observed in baboons treated with r-hTBP1. In conclusion, r-hTBP1 can effectively inhibit the development of endometriosis without hypoestrogenic effects in baboons.
This study demonstrates the feasibility of UTx by vascular anastomosis in a non-human primate species. The low success rate demonstrates the complexity involved in UTx surgery and the need for further methodological developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.