Merkel cell carcinoma (MCC) is the eponym for primary cutaneous neuroendocrine carcinoma. Recently, a new polyoma virus has been identified that is clonally integrated in the genome of the majority of MCCs, with truncating mutations in the viral large T antigen gene. We examined the presence of Merkel cell polyomavirus (MCV) in a set of 17 frozen tumor samples by quantitative polymerase chain reaction; 15 of them (88%) were positive. Sections from corresponding archival material were analyzed by immunohistochemistry (IHC) with the novel monoclonal antibody CM2B4, generated against a predicted antigenic epitope on the MCV T antigen, and tested for the expression of cytokeratin 20 (CK20). Sufficient archival material for IHC was available in only 15 of the 17 cases whose frozen tissue samples had been studied by polymerase chain reaction. Of the 15 tumors analyzed immunohistochemically, 10 (67%) showed positive labeling with CM2B4, 14 (93%) expressed CK20. A tissue microarray of 36 MCCs, 7 combined squamous and neuroendocrine carcinomas of the skin, and 26 pulmonary neuroendocrine carcinomas were also examined by IHC. Of the 36 MCCs assembled on a microarray, 32 (89%) tumors expressed CK20, and 27 (75%) were immunoreactive with CM2B4. The skin tumors with a combined squamous and neuroendocrine phenotype and all pulmonary neuroendocrine carcinomas failed to react with CM2B4. Our study shows that CM2B4 is a useful reagent for the diagnosis of MCC. It labels the majority of MCCs, but fails to react with pulmonary neuroendocrine carcinomas. We also found that neuroendocrine carcinomas of the skin arising in association with a squamous cell carcinoma seem to be independent of MCV.
The distinction between a benign subungual pigmented macule (lentigo) and an early lesion of melanoma in situ can be difficult. To identify histologic parameters of potential diagnostic value, we retrospectively reviewed biopsies and excisions of 35 pigmented nail lesions. We studied 20 melanomas (10 invasive and 10 noninvasive) and 15 benign subungual melanotic lentigines. Ten specimens of normal nail apparatus obtained for reasons other than melanonychia were also examined as controls. The parameters, which were analyzed, included the density of melanocytes, the presence of multinucleated cells, pagetoid spread, cytologic atypia, inflammation, and the distribution of melanin pigment. The density of melanocytes was measured as the number of cells per 1 mm stretch of subungual dermo-epithelial junction [=melanocyte count (MC)]. The MC for invasive melanomas was as follows: mean=102, median=92.5, and range 52 to 212. For noninvasive (only in situ) melanoma, the mean MC was 58.9, median 51, and range 39 to 136. For benign subungual melanotic macules, the mean MC was 15.3, median 14, and range 5 to 31. In normal controls, the mean MC was 7.7, median 7.5, and range 4 to 9. Qualitative features associated with in situ melanoma and useful for its distinction from benign subungual melanotic macules included the presence of confluent stretches of solitary units of melanocytes, multinucleated melanocytes, lichenoid inflammatory reaction, and florid pagetoid spread of melanocytes.
Relatlimab and nivolumab combination immunotherapy improves progression-free survival over nivolumab monotherapy in patients with unresectable advanced melanoma1. We investigated this regimen in patients with resectable clinical stage III or oligometastatic stage IV melanoma (NCT02519322). Patients received two neoadjuvant doses (nivolumab 480 mg and relatlimab 160 mg intravenously every 4 weeks) followed by surgery, and then ten doses of adjuvant combination therapy. The primary end point was pathologic complete response (pCR) rate2. The combination resulted in 57% pCR rate and 70% overall pathologic response rate among 30 patients treated. The radiographic response rate using Response Evaluation Criteria in Solid Tumors 1.1 was 57%. No grade 3–4 immune-related adverse events were observed in the neoadjuvant setting. The 1- and 2-year recurrence-free survival rate was 100% and 92% for patients with any pathologic response, compared to 88% and 55% for patients who did not have a pathologic response (P = 0.005). Increased immune cell infiltration at baseline, and decrease in M2 macrophages during treatment, were associated with pathologic response. Our results indicate that neoadjuvant relatlimab and nivolumab induces a high pCR rate. Safety during neoadjuvant therapy is favourable compared to other combination immunotherapy regimens. These data, in combination with the results of the RELATIVITY-047 trial1, provide further confirmation of the efficacy and safety of this new immunotherapy regimen.
A number of common driver mutations have been identified in melanoma, but other genetic or epigenetic aberrations are also likely to play a role in the pathogenesis of melanoma and present potential therapeutic targets. Translocations of the anaplastic lymphoma kinase (ALK), for example, have been reported in spitzoid melanocytic neoplasms leading to kinase-fusion proteins that result in immunohistochemically detectable ALK expression. In this study, we sought to determine whether ALK was also expressed in non-spitzoid primary and metastatic cutaneous melanomas. ALK immunohistochemistry (IHC) was performed on 603 melanomas (303 primary and 300 metastatic tumors) from 600 patients. ALK IHC expression was identified in 7 primary and 9 metastatic tumors. In 5 of 7 primary tumors and in 6 of 9 metastatic lesions, the majority of tumor cells were immunoreactive for ALK. In the other two primary and three metastatic lesions, positive staining was identified in less than half of the tumor cells. ALK-positivity was found in the presence or absence of BRAF or NRAS mutations. In contrast to prior observations with ALK-positive Spitz tumors, none of the ALK-positive melanomas harbored a translocation. Instead, the ALK-positive melanomas predominantly expressed the recently described ALK isoform, ALKATI, which lacks the extracellular and transmembrane domains of wild-type ALK, consists primarily of the intracellular tyrosine kinase domain, and originates from an alternative transcriptional initiation (ATI) site within the ALK gene. The findings are clinically relevant as patients with metastatic melanoma who have ALK expression may potentially benefit from treatment with ALK kinase inhibitors.
Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.