Heterogeneous photocatalysis of 1,3-dinitrobenzene (DNB) using simulated solar irradiation in the presence of semiconductor oxides was studied. Comparison of TiO 2 and ZnO showed that the former was a more efficient photocatalyst for the degradation of DNB. The addition of potential environmental co-contaminants such as acetic acid, fulvic acid and seawater salts to the DNB solutions all inhibited the DNB degradation rate. The addition of hydroxyl radical-generating compounds, including H 2 O 2 and NaNO 3 , to the DNB solutions both slightly reduced the DNB degradation rate, indicating that hydroxyl radical generation is not a rate limiting step in the overall reaction process. The use of 5 volume % acetone cosolvent slowed the degradation rate, however for 15 volume % acetone despite the slower relative rate of destruction, the higher concentrations of DNB provided higher mass destruction rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.