The paper offers a comprehensive study of the motion in a central force field with respect to a rotating noninertial reference frame. It is called Foucault Pendulum-like motion and it is a generalization of a classic Theoretical Mechanics problem. A closed form vectorial solution to this famous problem is presented. The vectorial time-explicit solution for the classic Foucault Pendulum problem is obtained as a particular case of the considerations made in the present aproach. Inedite conservation laws for the Foucault Pendulum-like motion are deduced by using simple differential and vectorial computations. They help to visualize the shape of the trajectories. Exact vectorial expressions for the law of motion and the velocity are also offered. The case of the driven Foucault Pendulum is also analyzed, and a closed form solution is deduced based on the general considerations. In the end, an inedite tensorial prime integral for the Foucault Pendulum problem is offered. It helps to reveal in a concise form, within a single entity, all the scalar and vectorial conservation laws for the Foucault Pendulum motion.Two important engineering applications to this approach are presented: the motion of a satellite with respect to a rotating reference frame and the Keplerian relative orbital motion. The latter has a great importance in modeling the problems concerning satellite formation flying, satellite constellations and space terminal rendezvous. The classic problem of the harmonic oscillator in an electromagnetic field is also solved by using the instruments presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.