In parallel and distributed systems, validation of scheduling heuristics is usually done by simulation on randomly generated synthetic workloads, typically represented by task graphs. Since there is no single generation method that models all possible workloads for scheduling problems, researchers often re-implement the classical generation algorithms or even implement ad hoc ones. A bad choice of generation method can mislead the validation of the algorithm due to biases it can induce. Moreover, different implementations of the same randomized generation method may produce slightly different graphs. These problems can harm the experimental comparison of scheduling algorithms. In order to provide a comparison basis we propose GGen -a unified and standard implementation of classical task graph generation methods used in the scheduling domain. We also provide an in-depth analysis of each generation method, emphasizing important graph properties that may influence scheduling algorithms.
In this paper we consider the problem of scheduling on computing platforms composed of several independent organizations, known as the Multi-Organization Scheduling Problem (MOSP). Each organization provides both resources and tasks and follows its own objectives. We are interested in the best way to minimize the makespan on the entire platform when the organizations behave in a selfish way. We study the complexity of the MOSP problem with two different local objectives-makespan and average completion time-and show that MOSP is NP-Hard in both cases. We formally define a selfishness notion, by means of restrictions on the schedules. We prove that selfish behavior imposes a lower bound of 2 on the approximation ratio for the global makespan. We present various approximation algorithms of ratio 2 which validate selfishness restrictions. These algorithms are experimentally evaluated through simulation, exhibiting good average performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.