Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.
The distal villous hypoplasia (DVH) pattern is a placental correlate of fetal growth restriction. Because the pattern seems to involve less complexity than do appropriately developed placental villi, we postulated that it may be associated with lower fractal dimension-a mathematical measure of complexity. Our study objectives were to evaluate interobserver agreement related to the DVH pattern among expert pathologists and to determine whether pathologist classification of DVH correlates with fractal dimension. A study set of 30 images of placental parenchyma at ×4 magnification was created by a single pathologist from a digital slide archive. The images were graded for the DVH pattern according to pre-specified definitions and included 10 images graded as "no DVH" (grade = 0), 10 with mild to moderate DVH (grade = 1), and 10 with severe DVH (grade = 2). The images were randomly sorted and shown to a panel of 4 international experts who similarly graded the images for DVH. Weighted kappas were calculated. For each image, fractal dimension was calculated by the Box Counting method. The correlation coefficient between (1) the averaged DVH scores obtained by the 5 pathologists and (2) fractal dimension was calculated. The mean weighted kappa score among the observers was 0.59 (range: 0.42-0.70). The correlation coefficient between fractal dimension and the averaged DVH score was -0.915 (P < 0.001). Expert pathologists achieve fair to substantial agreement in grading DVH, indicating consensus on the definition of DVH. Distal villous hypoplasia correlates extremely well with fractal dimension and represents an objective measure for DVH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.