Mitochondrial dysfunction is a key pathophysiological component of many acute and chronic diseases. Maintenance of mitochondrial homeostasis through the balance of mitochondrial turnover, fission and fusion, and generation of new mitochondria via mitochondrial biogenesis is critical for tissue health. Pharmacological activation of mitochondrial biogenesis can enhance oxidative metabolism and tissue bioenergetics, and improve organ function in conditions characterized by mitochondrial dysfunction. However, owing to the complexity of mitochondrial assembly and maintenance, identification of specific activators of mitochondrial biogenesis has been difficult. This review provides an overview of the role of mitochondrial dysfunction in acute and chronic diseases, details the current state of therapeutics for the stimulation of mitochondrial biogenesis and their effects on disease outcomes, describes new screening methodologies to identify novel stimulators and noncanonical pathways of mitochondrial biogenesis, and discusses potential hurdles of mitochondrial biogenesis as a therapeutic strategy.
Multigeneration reproduction studies are used to characterize parental and offspring systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been digitized into standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). An initial assessment of data quality and consistency was performed prior to profiling these environmental chemicals based on reproductive toxicity and associated toxicity endpoints. The pattern of toxicity across 75 effects for all 316 chemicals provided sets of chemicals with similar in vivo toxicity for future predictive modeling. Comparative analysis across the 329 studies identified chemicals with sensitive reproductive effects, based on comparisons to chronic and subchronic toxicity studies, as did the cross-generational comparisons within the multigeneration study. The general pattern of toxicity across all chemicals and the more focused comparative analyses identified 19 parental, offspring and reproductive effects with a high enough incidence to serve as targets for predictive modeling that will eventually serve as a chemical prioritization tool spanning reproductive toxicities. These toxicity endpoints included specific reproductive performance indices, male and female reproductive organ pathologies, offspring viability, growth and maturation, and parental systemic toxicities. Capturing this reproductive toxicity data in ToxRefDB supports ongoing retrospective analyses, test guideline revisions, and computational toxicology research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.