The fruity odours of wine are largely derived from the synthesis of esters and higher alcohols during yeast fermentation. The ATF1-and ATF2-encoded alcohol acetyltransferases of S. cerevisiae are responsible for the synthesis of ethyl acetate and isoamyl acetate esters, while the EHT1-encoded ethanol hexanoyl transferase is responsible for synthesizing ethyl caproate. However, esters such as these might be degraded by the IAH1-encoded esterase. The objectives of this study were: (a) to overexpress the genes encoding ester-synthesizing and ester-degrading enzymes in wine yeast; (b) to prepare Colombard table wines and base wines for distillation using these modified strains; and (c) to analyse and compare the ester concentrations and aroma profiles of these wines and distillates. The overexpression of ATF1 significantly increased the concentrations of ethyl acetate, isoamyl acetate, 2-phenylethyl acetate and ethyl caproate, while the overexpression of ATF2 affected the concentrations of ethyl acetate and isoamyl acetate to a lesser degree. The overexpression of IAH1 resulted in a significant decrease in ethyl acetate, isoamyl acetate, hexyl acetate and 2-phenylethyl acetate. The overexpression of EHT1 resulted in a marked increase in ethyl caproate, ethyl caprylate and ethyl caprate. The flavour profile of the wines and distillates prepared using the modified strains were also significantly altered as indicated by formal sensory analysis. This study offers prospects for the development of wine yeast starter strains with optimized ester-producing capability that could assist winemakers in their effort to consistently produce wine and distillates such as brandy to definable flavour specifications and styles.
The development of antimicrobial drug resistance among pathogenic bacteria and fungi is one of the most significant health issues of the 21st century. Recently, advances in nanotechnology have led to the development of nanomaterials, particularly metals that exhibit antimicrobial properties. These metal nanomaterials have emerged as promising alternatives to traditional antimicrobial therapies. In this review, a broad overview of metal nanomaterials, their synthesis, properties, and interactions with pathogenic micro‐organisms is first provided. Secondly, the range of nanomaterials that demonstrate passive antimicrobial properties are outlined and in‐depth analysis and comparison of stimuli‐responsive antimicrobial nanomaterials are provided, which represent the next generation of microbiocidal nanomaterials. The stimulus applied to activate such nanomaterials includes light (including photocatalytic and photothermal) and magnetic fields, which can induce magnetic hyperthermia and kinetically driven magnetic activation. Broadly, this review aims to summarize the currently available research and provide future scope for the development of metal nanomaterial‐based antimicrobial technologies, particularly those that can be activated through externally applied stimuli.
The use of visible (vis) and near-infrared spectroscopy (NIR) was explored as a tool to discriminate between samples of Australian commercial white wines of different varietal origins (Chardonnay and Riesling). Discriminant models were developed using principal component analysis (PCA), principal component regression (PCR), and discriminant partial least-squares (DPLS) regression. The samples were randomly split into two sets, one used as a calibration set (n = 136) and the remaining samples as a validation set (n = 133). When used to predict the variety of the validation set samples, the DPLS models correctly classified 100% of Riesling and up to 96% of Chardonnay wines. These results showed that vis-NIR might be a suitable and alternative technology that can be easily implemented by the wine industry to discriminate Riesling and Chardonnay commercial wine varieties. However, the relatively limited number of samples and varieties involved in the present work suggests caution in extending the potential of such a technique to other wine varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.