Proximal-distal differences in muscle activity are rarely considered when defining the activity level of hamstring muscles. The aim of this study was to determine the inter-muscular and proximal-distal electromyography (EMG) activity patterns of hamstring muscles during common hamstring exercises. Nineteen amateur athletes without a history of hamstring injury performed 9 exercises, while EMG activity was recorded along the biceps femoris long head (BFlh) and semitendinosus (ST) muscles using 15-channel high-density electromyography (HD-EMG) electrodes. EMG activity levels normalized to those of a maximal voluntary isometric contraction (%MVIC) were determined for the eccentric and concentric phase of each exercise and compared between different muscles and regions (proximal, middle, distal) within each muscle. Straight-knee bridge, upright hip extension, and leg curls exhibited the highest hamstrings activity in both the eccentric (40%-54%MVIC) and concentric phases (69%-85%MVIC). Hip extension was the only BF-dominant exercise (Cohen's d = 0.28 (eccentric) and 0.33 (concentric)). Within ST, lower distal than middle/proximal activity was found in the bent-knee bridge and leg curl exercises (d range = 0.53-1.20), which was not evident in other exercises. BFlh also displayed large regional differences across exercises (d range = 0.00-1.28). This study demonstrates that inter-muscular and proximal-distal activity patterns are exercise-dependent, and in some exercises are affected by the contraction mode. Knowledge of activity levels and relative activity of hamstring muscles in different exercises may assist exercise selection in hamstring injury management.
Objective
The aim of the present study was to analyse the relationships between creatine kinase (CK) concentration, an indirect marker of muscle damage, and global positioning system (GPS)-derived metrics of a continuous two-week-long preseason training period in elite football.
Design
Twenty-one elite male professional soccer players were assessed during a 14-day preseason preparatory period. CK concentrations were determined each morning, and a GPS system was used to quantify the external load. A generalized estimating equation (GEE) model was established to determine the extent to which the external load parameter explained post-training CK levels.
Results
The GEE model found that higher numbers of decelerations (χ
2 = 7.83, P = 0.005) were most strongly associated with the post-training CK level. Decelerations and accelerations accounted for 62% and 11% of the post-training CK level, respectively, and considerable interindividual variability existed in the data.
Conclusion
The use of GPS to predict muscle damage could be of use to coaches and practitioners in prescribing recovery practices. Based on GPS data, more individualized strategies could be devised and could potentially result in better subsequent performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.